[redis] redis高可用之持久化
一、Redis 高可用的相关知识
1.1 什么是高可用
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务( 如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
1.2 Redis的高可用技术
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。
-
持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
-
主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。 -
哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)
缺陷:写操作无法负载均衡;存储能力受到单机的限制。 -
Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)
1.3 持久化的功能
持久化的功能: RRedis 是内存数据库,数据存储在内存中。 为确保数据不会在 Redis 进程异常终止(如服务器断电)后永久丢失,有必要定期将 Redis 数据以某种形式(数据或命令)从内存保存到硬盘。 下一次重新启动 Redis 时,数据恢复将通过使用持久化文件来实现。此外,持久文件还可以复制到远程位置,用于灾难备份。
灾难备份:一般做异地备份,发生灾难后切换节点。
1.4 redis持久化的方式
- RDB持久化:原理是将Reids在内存中的数据库记录定时保存到磁盘上。(定时对内存中的数据生成快照,以文件形式保存在硬盘中)
- AOF持久化(append only file):原理是将Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。(类似于Mysql的二进制日志)(以追加的方式将写和删的操作命令记录到AOF文件中)
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持 久化仍然有其用武之地。(RDB体积小,恢复速度更快。对性能影响较小。)
二、RBD持久化
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。
2.1 触发条件
RDB持久化的触发分为手动触发和自动触发两种。
(1)手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。
(2)自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。
save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave进行快照。
##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
vim /usr/local/redis/conf/redis.conf
--433行--RDB默认保存策略
# save 3600 1 300 100 60 10000
#表示以下三个save条件满足任意一个时,都会引起bgsave的调用
save 3600 1 :当时间到3600秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave--454行--是否开启RDB文件压缩
rdbcompression yes
--481行--指定RDB文件名
dbfilename dump.rdb
--504行--指定RDB文件和AOF文件所在目录
dir /usr/local/redis/data##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。


2.2 执行流程
(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
2.3 启动时加载
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。
三、AOF 持久化
RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。
3.1 开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /usr/local/redis/conf/redis.conf
--1380行--修改,开启AOF
appendonly yes
--1407行--指定AOF文件名称
appendfilename "appendonly.aof"
--1505行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yessystemctl restart redis-server.service


3.2 执行流程
由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:
●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite):定期重写AOF文件,达到压缩的目的。
(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /usr/local/redis/conf/redis.conf
--1439--
●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
●appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
(4)文件重写压缩AOF文件的原因
- 过期的数据不再写入文件。
- 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、 有些数据被删除了(set myset vl, del myset)等。
- 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。(sadd添加集合)
rewrite之后aof文件会保存keys的最后状态,清除掉之前冗余的,来缩小这个文件。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
(5)文件重写的触发方式
-
手动触发: 直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
-
自动触发: 通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。
- 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
注意:
重写由父进程fork子进程进行。
重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
vim /usr/local/redis/conf/redis.conf
--1480--

●auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

#文件重写的流程如下:
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
3.3 启动加载
当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。
四、redis持久化的两种方式
RDB持久化:定时把redis内存中的数据进行快照并压缩保存到硬盘里
手动触发(bgsave命令) 自动触发(满足save指令配置的条件,主从全量同步,执行shutdown命令时)
文件名:dump.rdb
优缺点:RDB持久化保存的文件占用空间小,网络传输块,恢复速度也比AOF更快,性能影响比AOF更小;
实时性不如AOF,兼容性较差,持久化期间在fork子进程时会阻塞redis父进程。
AOF持久化:以追加的方式将redis写操作的命令记录到aof文件中
执行流程:命令追加(写命令追加到aof_buf缓冲区)
文件写入和同步(文件名:appendonly.aof,同步策略:appendfsync everysec|always|no)
文件重写(减少aof文件占用空间的大小和加快恢复速度,执行bgrewriteaof命令触发)
优缺点:实时性比RDB更好,支持秒级持久化,兼容性较好
持久化保存的文件占用磁盘空间更大,恢复速度更慢,性能影响更大,AOF文件重写期间在fork子进程时会阻塞redis父进程
五、Redis 性能管理
5.1 查看redis的内存使用情况
redis-cli -h 192.168.136.190 -p 6379 -a abc123
info memory
5.2 内存碎片
内存碎片率
mem_fragmentation_ratio:内存碎片率。mem_fragmentation_ratio = used_memory_rss / used_memory
used_memory_rss:是Redis向操作系统申请的内存。
used_memory:是Redis中的数据占用的内存。
used_memory_peak:redis内存使用的峰值。

内存碎片如何产生的?
Redis内部有自己的内存管理器,为了提高内存使用的效率,来对内存的申请和释放进行管理。
Redis中的值删除的时候,并没有把内存直接释放,交还给操作系统,而是交给了Redis内部有内存管理器。
Redis中申请内存的时候,也是先看自己的内存管理器中是否有足够的内存可用。
Redis的这种机制,提高了内存的使用率,但是会使Redis中有部分自己没在用,却不释放的内存,导致了内存碎片的发生。
#跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
●内存碎片率在1到1.5之间是正常的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis内存占用。
#解决碎片率大的问题:
如果你的Redis版本是4.0以下的,需要在 redis-cli 工具上输入 shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。Redis服务器重启后,Redis会将没用的内存归还给操作系统,碎片率会降下来。Redis4.0版本开始,可以在不重启的情况下,线上整理内存碎片。
config set activedefrag yes #自动碎片清理,内存就会自动清理了。
memory purge #手动碎片清理

5.3 内存使用率
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
避免内存交换发生的方法:
- 针对缓存数据大小选择安装Redis 实例
- 尽可能的使用Hash数据结构存储
- 设置key的过期时间
5.4 内回收key
内存清理策略,保证合理分配redis有限的内存资源。
当内存使用达到设置的最大阈值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除(noenviction)。配置文件中修改 maxmemory-policy 属性值:
im /etc/redis/6379.conf---598行----maxmemory-policy noenviction #修改max-memory-policy属性值##回收策略有以下几种:##●volatile-lru#使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)●volatile-ttl#从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)●volatile-random#从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)●allkeys-lru#使用LRU算法 从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)●allkeys-random#从数据集合中任意选择数据淘汰(随机移除key)●noenviction#禁止淘汰数据(不删除直到写满时报错)
六、redis的优化策略
(1)设置Redis客户端连接的超时时间
vim /etc/redis/6379.conf-----114行------114 timeout 0 #单位为秒(s),取值范围为0~100000。默认值为0,表示无限制,即Redis不会主动断开连接,即使这个客户端已经空闲了很长时间。#例如可设置为600,则客户端空闲10分钟后,Redis会主动断开连接。#注意:在实际运行中,为了提高性能,Redis不一定会精确地按照timeout的值规定的时间来断开符合条件的空闲连接,例如设置timeout为10s,但空闲连接可能在12s后,服务器中新增很多连接时才会被断开。
(2)设置 redis客户端最大连接数
vim /etc/redis/6379.conf-----540行------540 # maxclients 10000 #若不设置,默认是10000redis-cli info clients #查看redis当前连接数
(3)设置redis自动碎片清理
config set activedefrag yes #自动碎片清理memory purge #手动碎片清理
(4)设置redis最大内存阈值
内存阈值如果不设置,则没有限制,直到把服务器的内存干满、之后会使用交换分区。
设置内存阈值后,不会使用swap交换分区。且如果设置了key回收策略,当内存使用达到设置的最大阈值时,系统会进行key回收。
vim /etc/redis/6379.conf-----567行------567 # maxmemory <bytes>568 maxmemory 1gb #例如设置最大内存阈值为1gb
(5)设置key回收策略
当内存使用达到设置的最大阈值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除(noenviction)。设置key回收策略后,则当redis内存使用达到设置的最大阈值时,系统会进行key回收,释放一部分内存。
vim /etc/redis/6379.conf---598行----maxmemory-policy noenviction #需要修改max-memory-policy属性值##回收策略有以下几种:##●volatile-lru#使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)●volatile-ttl#从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)●volatile-random#从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)●allkeys-lru#使用LRU算法 从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)●allkeys-random#从数据集合中任意选择数据淘汰(随机移除key)●noenviction#禁止淘汰数据(不删除直到写满时报错)
1)设置 config set activedefrag yes 开启内存碎片自动清理,或者定时执行 memory purge 清理内存碎片
2)尽可能使用 hash 数据类型存储数据。因为 hash 类型的一个 key 可包含多个字段,该类型的数据占用空间较小
3)建议给 key 设置过期时间
4)精简 key 的键名和键值,控制 key 占用空间的大小,避免 bigkey 的产生(redis-cli --bigkeys 可用于查找bigKey)
5)修改配置 maxmemory 指定redis可占用的最大内存大小
修改配置 maxmemory-policy 指定内存数据淘汰策略(key的回收策略),实现保证内存使用率不超过最大内存
修改配置 maxmemory-samples 指定内存数据淘汰策略的样本数量,一般为3~7,值越大样本越精确
修改配置 maxclients 指定最大客户端连接数
修改配置 tcp-backlog 指定最大连接排队数
修改配置 timeout 指定连接超时时间
修改配置 lazyfree-lazy-expire yes 设置惰性删除,将删除过期key的操作放在后台中去执行,避免阻塞主线程
修改配置 no-appendfsync-on-rewrite yes 设置AOF文件重写期间,AOF后台子进程不进行刷盘操作,避免AOF重写和fsync竞争磁盘IO资源,导致redis延迟增加
6)设置AOF持久化和主从复制来备份数据,采用哨兵或集群模式实现redis集群的高可用
7)建议设置 config set requirepass 或 修改配置 requirepass 来设置 redis 密码
七、redis雪崩、穿透、击穿的原因和解决方案
正常情况下,大部分的访问请求应该是先被redis响应的,在redis那里得不到响应的小部分访问请求才会去请求MySQL数据库获取数据,这样MySQL数据库的负载压力是非常小的,且可以正常工作。缓存雪崩/穿透/击穿三大问题的根本原因在于redis缓存命中率下降,大量请求会直接发送给MySQL数据库,导致MySQL数据库压力过大而崩溃。
缓存雪崩:redis中大量缓存key集体过期
缓存穿透:大量请求访问redis和MySQL都不存在的资源
缓存击穿:redis中一个热点key过期,此时又有大量用户访问这个热点key(redis-cli --hotkeys 可用于查找热Key)
缓存雪崩的解决方案:
使用随机数设置key的过期时间,防止集体过期
设置缓存标记,如果缓存过期,则自动更新缓存
数据库使用排他锁,实现加锁等待
缓存穿透的解决方案:
对空值也进行缓存
使用布隆过滤器进行判断拦截一定不存在的无效请求
使用脚本实时监控,进行黑名单限制
缓存击穿的解决方案:
预先对热点数据进行缓存预热
监控数据,实时调整过期时长
数据库使用排他锁,实现加锁等待
八、如何保证 MySQL 和 redis 的数据一致性?
读取数据时,先从redis读取数据,如果redis中没有,再从MySQL中读取,并将读取到的数据同步到redis缓存中。
更新数据时,先更新MySQL数据库,再更新redis缓存
删除数据时,先删除redis缓存,再删除MySQL数据库
对于一些关键数据,可以使用MySQL的触发器来实现同步更新redis缓存。也可以使用定时任务,定时自动进行缓存预热,来定期同步MySQL和redis的数据。
相关文章:
[redis] redis高可用之持久化
一、Redis 高可用的相关知识 1.1 什么是高可用 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 但是在Redis语境中,高可用的含义似乎要宽泛一些,…...
云原生 微服务 restapi devops相关的一些概念说明(持续更新中)
云原生: 定义 云原生是一种构建和运行应用程序的方法,是一套技术体系和方法论。它是一种在云计算环境中构建、部署和管理现代应用程序的软件方法。云原生应用程序是基于微服务架构的,采用开源堆栈(K8SDocker)进行容器…...
初学unity学习七天,经验收获总结
初学unity七天,经验收获总结 学习就是认识新观念和新想法的过程。 假如人们始终以同一种思维方式来考虑问题的话,那么始终只会得到同样的结果。 因为我对你讲述的许多内容是你以前从未接触过的,所以我建议你,在你还没有做之前&…...
hcip实验2
根据地址分配完成基础配置 先配置r1,r2,r3的ospf以及与isp通讯: 配置缺省路由: 完成nat配置: 完成r5,r6,r7,r8,r15的mgre以及整个网络的ospf配置 mgre: area 2 和3之间用多进程双向重发布技术完成: area4和5之间用虚…...
js:使用canvas画一个半圆
背景 需求需要画一个半圆,或者多半圆,其实一下子就能想到 canvas 中的圆弧,核心使用 context.arc context.arc(x,y,r,sAngle,eAngle,counterclockwise)接下来我们看看示例 例一 <!DOCTYPE html> <html lang"en"> &…...
1.框架介绍项目环境配置与项目启动!
目录 1.框架开发方向:2.项目启动与环境搭建 1.框架开发方向: 1.前后端分离项目 2.纯后端项目 3.移动端开发uni-app(ios、Android、H5、微信小程序) 4.内容管理系统2.项目启动与环境搭建 1.安装node.js 下载地址可以用nvm安装 便于运行前端项目https://juejin.cn/post/7094576…...
LeetCode算法题解:螺旋矩阵
LeetCode算法题解:螺旋矩阵 题目描述 给定一个 m x n 的矩阵,按照螺旋顺序返回矩阵中的所有元素。 解题思路 1. 初始化变量 我们首先定义四个边界变量来跟踪螺旋遍历的边界:top、bottom、left 和 right。 2. 螺旋遍历 开始从左到右遍历…...
【Java 设计模式】设计原则之开放封闭原则
文章目录 1. 定义2. 好处3. 应用4. 示例结语 在软件开发中,设计原则是创建灵活、可维护和可扩展软件的基础。 这些原则为我们提供了指导方针,帮助我们构建高质量、易理解的代码。 ✨单一职责原则(SRP) ✨开放/封闭原则(…...
数据分析求职-知识脑图
今天和大家聊聊数据分析求职常见面试题,这是这个系列的第一篇文章,但是我不想开始就直接罗列题目,因为这样的文章实在太多了,同学们的兴趣程度肯定一般。所以,我想先和大家聊聊在准备面试题时候通常遇到的困扰…...
SQL-修改数据
🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 🍹文章作者技术和水平很有限,如果文中出现错误&am…...
Rockchip | FIQ-Debugger调试工具
FIQ-Debugger fiq debugger是集成到内核中的一种系统调试手段。 FIQ在arm架构中相当于nmi中断,fiq debugger把串口注册成fiq中断,在串口fiq中断服务程序中集成了一些系统调试命令。 一般情况下串口是普通的console模式,在串口工具下键盘输入…...
第二百六十三回 给geolocator插件提交问题
文章目录 1. 知识回顾2. 问题描述与解决2.1 问题描述2.2 问题解决 3. 心得与感受 1. 知识回顾 我们在前面章回中介绍过如何获取位置信息,主要介绍的是geolocator这个三方包,不过在最近使用时却发现了问题,尝试搜索解决,但是没有结…...
分组背包问题
题目来源:9. 分组背包问题 - AcWing题库 题目: 有 N 组物品和一个容量是 V 的背包。 每组物品有若干个,同一组内的物品最多只能选一个。 每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。 …...
WinForm 中Label自动换行 解决方法
Label自动换行 1.单行完全显示:Label.AutoSize true; 2.换行显示:Label. AutoSize false;(Label框高度用户指定)。 3.多行显示 根据字数自动控制高度:Label.AutoSize true;Label.MaximumSize new Size(w,0); …...
【蓝桥杯软件赛 零基础备赛20周】第7周——二叉树
文章目录 1 二叉树概念2 二叉树的存储和编码2.1 二叉树的存储方法2.2 二叉树存储的编码实现2.3 二叉树的极简存储方法 3 例题4 习题 前面介绍的数据结构数组、队列、栈,都是线性的,它们存储数据的方式是把相同类型的数据按顺序一个接一个串在一起。简单的…...
SpringBoot+SSM项目实战 苍穹外卖(12) Apache POI
继续上一节的内容,本节是苍穹外卖后端开发的最后一节,本节学习Apache POI,完成工作台、数据导出功能。 目录 工作台Apache POI入门案例 导出运营数据Excel报表 工作台 工作台是系统运营的数据看板,并提供快捷操作入口,…...
Maven 基础总结篇
Maven 基础总结篇 Maven是专门用于管理和构建Java项目的工具,它的主要功能有: 提供了一套标准化的项目结构:用于解决不同IDE(例如eclipse与IDEA)不同的项目结构的问题 提供了一套标准化的构建流程(编译&…...
MySQL的导入导出及备份
一.准备导入之前 二.navicat导入导出 编辑 三.MySQLdump命令导入导出 四.load data file命令的导入导出 五.远程备份 六. 思维导图 一.准备导入之前 需要注意: 在导出和导入之前,确保你有足够的权限。在进行导入操作之前,确保目标数据…...
【机器学习】常见算法详解第2篇:K近邻算法各种距离度量(已分享,附代码)
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用࿰…...
@KafkaListener指定kafka集群
基于KafkaListener注解的kafka监听代码可以手动指定要消费的kafka集群,这对于需要访问多套kafka集群的程序来说,是有效的解决方案。这里需要注意的是,此时的消费者配置信息需使用原生kafka的配置信息格式(如:ConsumerC…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
