当前位置: 首页 > news >正文

KY43 全排列

全排列板子
ti

#include<bits/stdc++.h>using namespace std;string s;
map<string, int>mp;void swap(char &a, char &b){char em = a;a = b;b = em;
}void dfs(int n){  //将s[n~l]的全排列转化成s[n]s[n+1~l]的全排列 if(n == s.length()){mp[s] = 1;return ;}for(int i = n; i < s.length(); i ++ ){swap(s[n], s[i]);  //for和这个swap一起保证第n位所有字母都有可能 dfs(n + 1);  //进到这一步,第n位的字母都定了, swap(s[n], s[i]);}
}int main()
{cin>>s;dfs(0);for(auto i = mp.begin(); i != mp.end(); i ++ ){cout<<i->first<<endl;}return 0;
}

第二种解法
next_permutation,自带的全排列库函数,但是他只会按照输入的s的顺序排列,所以要先sort一下

#include<bits/stdc++.h>using namespace std;string s;int main()
{cin>>s;sort(s.begin(), s.end());cout<<s<<endl;for(s.begin(); next_permutation(s.begin(), s.end());){cout<<s<<endl;}return 0;
}

相关文章:

KY43 全排列

全排列板子 ti #include<bits/stdc.h>using namespace std;string s; map<string, int>mp;void swap(char &a, char &b){char em a;a b;b em; }void dfs(int n){ //将s[n~l]的全排列转化成s[n]s[n1~l]的全排列 if(n s.length()){mp[s] 1;return ;}f…...

UltraScale 和 UltraScale+ 生成已加密文件和已经过身份验证的文件

注释 &#xff1a;如需了解更多信息&#xff0c;请参阅《使用加密和身份验证确保 UltraScale/UltraScale FPGA 比特流的安全》 (XAPP1267)。 要生成加密比特流&#xff0c;请在 Vivado IDE 中打开已实现的设计。在主工具栏中&#xff0c;依次选择“Flow” → “Bitstream Setti…...

2023年全国职业院校技能大赛软件测试赛题—单元测试卷②

单元测试 一、任务要求 题目1&#xff1a;任意输入2个正整数值分别存入x、y中&#xff0c;据此完成下述分析&#xff1a;若x≤0或y≤0&#xff0c;则提示&#xff1a;“输入不符合要求。”&#xff1b;若2值相同&#xff0c;则提示“可以构建圆形或正方形”&#xff1b;若2<…...

极兔单号查快递,极兔快递单号查询,筛选出途经指定城市的单号

随着电商的繁荣&#xff0c;快递单号已经成为我们生活中的一部分。然而&#xff0c;面对海量的快递信息&#xff0c;如何快速、准确地筛选出我们需要的单号&#xff0c;变成了许多人的痛点。今天&#xff0c;我要为你介绍一款强大的工具——快递批量查询高手&#xff0c;让你的…...

[redis] redis高可用之持久化

一、Redis 高可用的相关知识 1.1 什么是高可用 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 但是在Redis语境中&#xff0c;高可用的含义似乎要宽泛一些&#xff0c;…...

云原生 微服务 restapi devops相关的一些概念说明(持续更新中)

云原生&#xff1a; 定义 云原生是一种构建和运行应用程序的方法&#xff0c;是一套技术体系和方法论。它是一种在云计算环境中构建、部署和管理现代应用程序的软件方法。云原生应用程序是基于微服务架构的&#xff0c;采用开源堆栈&#xff08;K8SDocker&#xff09;进行容器…...

初学unity学习七天,经验收获总结

初学unity七天&#xff0c;经验收获总结 学习就是认识新观念和新想法的过程。 假如人们始终以同一种思维方式来考虑问题的话&#xff0c;那么始终只会得到同样的结果。 因为我对你讲述的许多内容是你以前从未接触过的&#xff0c;所以我建议你&#xff0c;在你还没有做之前&…...

hcip实验2

根据地址分配完成基础配置 先配置r1,r2,r3的ospf以及与isp通讯&#xff1a; 配置缺省路由&#xff1a; 完成nat配置&#xff1a; 完成r5,r6,r7,r8,r15的mgre以及整个网络的ospf配置 mgre&#xff1a; area 2 和3之间用多进程双向重发布技术完成&#xff1a; area4和5之间用虚…...

js:使用canvas画一个半圆

背景 需求需要画一个半圆&#xff0c;或者多半圆&#xff0c;其实一下子就能想到 canvas 中的圆弧&#xff0c;核心使用 context.arc context.arc(x,y,r,sAngle,eAngle,counterclockwise)接下来我们看看示例 例一 <!DOCTYPE html> <html lang"en"> &…...

1.框架介绍项目环境配置与项目启动!

目录 1.框架开发方向:2.项目启动与环境搭建 1.框架开发方向: 1.前后端分离项目 2.纯后端项目 3.移动端开发uni-app(ios、Android、H5、微信小程序) 4.内容管理系统2.项目启动与环境搭建 1.安装node.js 下载地址可以用nvm安装 便于运行前端项目https://juejin.cn/post/7094576…...

LeetCode算法题解:螺旋矩阵

LeetCode算法题解&#xff1a;螺旋矩阵 题目描述 给定一个 m x n 的矩阵&#xff0c;按照螺旋顺序返回矩阵中的所有元素。 解题思路 1. 初始化变量 我们首先定义四个边界变量来跟踪螺旋遍历的边界&#xff1a;top、bottom、left 和 right。 2. 螺旋遍历 开始从左到右遍历…...

【Java 设计模式】设计原则之开放封闭原则

文章目录 1. 定义2. 好处3. 应用4. 示例结语 在软件开发中&#xff0c;设计原则是创建灵活、可维护和可扩展软件的基础。 这些原则为我们提供了指导方针&#xff0c;帮助我们构建高质量、易理解的代码。 ✨单一职责原则&#xff08;SRP&#xff09; ✨开放/封闭原则&#xff08…...

数据分析求职-知识脑图

今天和大家聊聊数据分析求职常见面试题&#xff0c;这是这个系列的第一篇文章&#xff0c;但是我不想开始就直接罗列题目&#xff0c;因为这样的文章实在太多了&#xff0c;同学们的兴趣程度肯定一般。所以&#xff0c;我想先和大家聊聊在准备面试题时候通常遇到的困扰&#xf…...

SQL-修改数据

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…...

Rockchip | FIQ-Debugger调试工具

FIQ-Debugger fiq debugger是集成到内核中的一种系统调试手段。 FIQ在arm架构中相当于nmi中断&#xff0c;fiq debugger把串口注册成fiq中断&#xff0c;在串口fiq中断服务程序中集成了一些系统调试命令。 一般情况下串口是普通的console模式&#xff0c;在串口工具下键盘输入…...

第二百六十三回 给geolocator插件提交问题

文章目录 1. 知识回顾2. 问题描述与解决2.1 问题描述2.2 问题解决 3. 心得与感受 1. 知识回顾 我们在前面章回中介绍过如何获取位置信息&#xff0c;主要介绍的是geolocator这个三方包&#xff0c;不过在最近使用时却发现了问题&#xff0c;尝试搜索解决&#xff0c;但是没有结…...

分组背包问题

题目来源&#xff1a;9. 分组背包问题 - AcWing题库 题目&#xff1a; 有 N 组物品和一个容量是 V 的背包。 每组物品有若干个&#xff0c;同一组内的物品最多只能选一个。 每件物品的体积是 vij&#xff0c;价值是 wij&#xff0c;其中 i 是组号&#xff0c;j 是组内编号。 …...

WinForm 中Label自动换行 解决方法

Label自动换行 1.单行完全显示&#xff1a;Label.AutoSize true&#xff1b; 2.换行显示&#xff1a;Label. AutoSize false;(Label框高度用户指定)。 3.多行显示 根据字数自动控制高度&#xff1a;Label.AutoSize true&#xff1b;Label.MaximumSize new Size(w,0); …...

【蓝桥杯软件赛 零基础备赛20周】第7周——二叉树

文章目录 1 二叉树概念2 二叉树的存储和编码2.1 二叉树的存储方法2.2 二叉树存储的编码实现2.3 二叉树的极简存储方法 3 例题4 习题 前面介绍的数据结构数组、队列、栈&#xff0c;都是线性的&#xff0c;它们存储数据的方式是把相同类型的数据按顺序一个接一个串在一起。简单的…...

SpringBoot+SSM项目实战 苍穹外卖(12) Apache POI

继续上一节的内容&#xff0c;本节是苍穹外卖后端开发的最后一节&#xff0c;本节学习Apache POI&#xff0c;完成工作台、数据导出功能。 目录 工作台Apache POI入门案例 导出运营数据Excel报表 工作台 工作台是系统运营的数据看板&#xff0c;并提供快捷操作入口&#xff0c…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...