当前位置: 首页 > news >正文

谷歌最新医学领域LLM大模型:AMIE

2024年1月11日Google 研究院发布最新医疗大模型AMIE:用于诊断医学推理和对话的研究人工智能系统。
文章链接:Articulate Medical Intelligence Explorer (AMIE)
giuthub:目前代码未开源

关于大模型之前有过一篇总结:大语言模型(LLM)发展历程及模型相关信息汇总欢迎大家阅读

下面是关于AMIE的解读:

医患对话是医学的基石,熟练且有意的沟通可以推动诊断、管理、同理心和信任。能够进行此类诊断对话的人工智能系统可以通过成为临床医生和患者等有用的对话伙伴来提高护理的可用性、可及性、质量和一致性。但接近临床医生丰富的专业知识是一项重大挑战。

医学领域之外的大型语言模型 (LLM) 的最新进展表明,它们可以计划、推理并使用相关上下文来进行丰富的对话。然而,良好的诊断对话有许多方面是医学领域独有的。一位高效的临床医生会获取完整的“临床病史”,并提出有助于得出鉴别诊断的明智问题。他们运用相当多的技能来建立有效的关系,清楚地提供信息,与患者共同做出明智的决定,对他们的情绪做出同理心的反应,并在下一步的护理中支持他们。虽然法学硕士可以准确地执行医学总结或回答医学问题等任务,但很少有专门针对开发此类对话诊断能力的工作。

受这一挑战的启发,我们开发了 Articulate Medical Intelligence Explorer (AMIE),这是一个基于法学硕士并针对诊断推理和对话进行优化的研究人工智能系统。我们从临床医生和患者的角度从反映现实世界临床咨询质量的多个维度对 AMIE 进行了培训和评估。为了将 AMIE 扩展到多种疾病状况、专业和场景,我们开发了一种新颖的基于自我游戏的模拟诊断对话环境,具有自动反馈机制,以丰富和加速其学习过程。我们还引入了推理时间链推理策略,以提高 AMIE 的诊断准确性和对话质量。最后,我们通过模拟与训练有素的演员的协商,在多轮对话的真实例子中前瞻性地测试了 AMIE。

AMIE 针对诊断对话进行了优化,提出有助于减少不确定性并提高诊断准确性的问题,同时还与有效临床沟通的其他要求(例如同理心、培养关系和清晰地提供信息)进行平衡。

对话式诊断人工智能的评估

除了开发和优化人工智能系统本身用于诊断对话之外,如何评估此类系统也是一个悬而未决的问题。受到用于衡量现实环境中咨询质量和临床沟通技巧的公认工具的启发,我们构建了一个试点评估标准,以评估与病史采集、诊断准确性、临床管理、临床沟通技巧、关系培养和共情。

然后,我们设计了一项基于文本的咨询的随机、双盲交叉研究,其中经过验证的患者参与者与经过委员会认证的初级保健医生 (PCP) 或针对诊断对话进行优化的人工智能系统进行交互。我们以客观结构化临床检查 (OSCE) 的方式进行咨询,这是现实世界中常用的一种实用评估,用于检查临床医生的技能和能力。以标准化和客观的方式评估能力。在典型的 OSCE 中,临床医生可能会在多个工作站之间轮换,每个工作站都模拟现实生活中的临床场景,在这些场景中,他们执行诸如与标准化患者演员(经过仔细培训以模拟患有特定病症的患者)进行咨询等任务。咨询是使用同步文本聊天工具进行的,模仿了当今大多数使用法学硕士的消费者所熟悉的界面。
在这里插入图片描述
AMIE 是一个基于LLM的研究人工智能系统,用于诊断推理和对话。

AMIE:基于LLM的对话式诊断研究人工智能系统

我们在真实世界的数据集上对 AMIE 进行了训练,其中包括医学推理、医学总结和真实世界的临床对话。

使用通过被动收集和转录现场临床就诊而开发的真实对话来培训法学硕士是可行的,但是,两个重大挑战限制了它们在培训法学硕士进行医学对话方面的有效性。首先,现有的现实世界数据往往无法捕捉广泛的医疗状况和场景,阻碍了可扩展性和全面性。其次,来自现实世界对话记录的数据往往很嘈杂,包含模棱两可的语言(包括俚语、行话、幽默和讽刺)、中断、不合语法的话语和隐含的引用。

为了解决这些限制,我们设计了一个基于自我游戏的模拟学习环境,具有自动反馈机制,可在虚拟护理环境中进行诊断医疗对话,使我们能够在许多医疗条件和环境中扩展 AMIE 的知识和能力。除了所描述的真实世界数据的静态语料库之外,我们还使用此环境通过一组不断发展的模拟对话来迭代微调 AMIE。

这个过程由两个自我对弈循环组成:(1)一个“内部”自我对弈循环,其中 AMIE 利用上下文中的评论家反馈来改进其在与人工智能患者模拟器的模拟对话中的行为;(2)“外部”自我播放循环,其中一组经过改进的模拟对话被纳入后续的微调迭代中。由此产生的新版本的 AMIE 可以再次参与内部循环,从而创建一个良性的持续学习循环。

此外,我们还采用了推理时间链策略,使 AMIE 能够根据当前对话逐步完善其响应,以得出知情且有依据的答复。

在这里插入图片描述
AMIE 使用一种新颖的基于自我游戏的模拟对话学习环境来提高多种疾病状况、专业和患者背景下的诊断对话的质量。

我们测试了与模拟患者(由训练有素的演员扮演)会诊的表现,并与使用上述随机方法的 20 名真实 PCP 进行的会诊进行比较。在一项随机、盲法交叉研究中,从专科主治医生和模拟患者的角度对 AMIE 和 PCP 进行了评估,该研究包括来自加拿大、英国和印度的 OSCE 提供者的 149 个案例场景,涉及不同的专业和疾病。

值得注意的是,我们的研究并不是为了模仿传统的面对面 OSCE 评估或临床医生通常使用文本、电子邮件、聊天或远程医疗的方式。相反,我们的实验反映了当今消费者与法学硕士互动的最常见方式,这是人工智能系统参与远程诊断对话的一种潜在可扩展且熟悉的机制。
在这里插入图片描述
通过在线多轮同步文本聊天与模拟患者进行虚拟远程 OSCE 的随机研究设计概述。

AMIE 性能

在这种情况下,我们观察到,当沿着多个具有临床意义的咨询质量轴进行评估时,AMIE 执行模拟诊断对话的效果至少与 PCP 一样好。从专科医生的角度来看,AMIE 在 32 个轴中的 28 个轴上具有更高的诊断准确性和卓越的性能,从患者参与者的角度来看,在 26 个轴中的 24 个轴上,AMIE 具有更高的诊断准确性和卓越的性能。
在这里插入图片描述
在我们的评估中,AMIE 在诊断对话的多个评估轴上均优于 PCP。
在这里插入图片描述
专家评级的 top-k 诊断准确性。AMIE 和 PCP 的 top-k 鉴别诊断 (DDx) 准确性在 149 个场景中与地面真实诊断 (a) 和可接受的鉴别诊断中列出的所有诊断 (b) 进行比较。Bootstrapping (n=10,000) 确认 AMIE 和 PCP DDx 准确度之间的所有前 k 个差异均显着,在 错误发现率 (FDR) 校正后,p <0.05。
在这里插入图片描述
由专科医生评估的诊断性对话和推理质量。在 32 个轴中的 28 个轴上,AMIE 的性能优于 PCP,而其他轴的性能相当。

AMIE的局限性

我们的研究有一些局限性,应谨慎解释。首先,我们的评估技术可能低估了人类对话的现实价值,因为我们研究中的临床医生仅限于不熟悉的文本聊天界面,该界面允许大规模的法学硕士与患者互动,但不能代表通常的临床实践。其次,任何此类研究都必须被视为漫长旅程中探索性的第一步。从我们在本研究中评估的法学硕士研究原型过渡到可供人们和为其提供护理的人使用的安全而强大的工具,将需要大量的额外研究。有许多重要的限制需要解决,包括现实世界约束下的实验性能,以及对健康公平、隐私、鲁棒性等重要主题的专门探索,以确保技术的安全性和可靠性。

AMIE 对临床医生的帮助

在最近发布的预印本中,我们评估了 AMIE 系统早期迭代单独生成 DDx 或作为临床医生辅助的能力。二十 (20) 名全科临床医生评估了 303 个具有挑战性的真实医疗案例,这些案例来自* 新英格兰医学杂志 * (NEJM) [ 临床病理学会议 ](https:/ /www.nejm.org/case-challenges) (CPC)。每份病例报告均由两名随机接受两种辅助条件之一的临床医生阅读:搜索引擎和标准医疗资源的帮助,或除这些工具外的 AMIE 帮助。所有临床医生在使用相应的辅助工具之前都提供了基线、无协助的 DDx。
在这里插入图片描述
协助随机读者研究设置,调查 AMIE 对临床医生解决新英格兰医学杂志复杂诊断病例挑战的辅助效果

AMIE 表现出的独立性能超过了无人协助的临床医生(前 10 名准确率分别为 59.1% 和 33.6%,p= 0.04)。比较两个辅助研究组,与没有 AMIE 协助的临床医生 (24.6%,p<0.01) 和有搜索的临床医生 (5.45%,p=0.02) 相比,受 AMIE 协助的临床医生的前 10 名准确率更高。此外,与没有 AMIE 协助的临床医生相比,得到 AMIE 协助的临床医生得出了更全面的鉴别列表。在这里插入图片描述
除了强大的独立性能之外,使用 AMIE 系统还可以为临床医生解决这些复杂的病例挑战带来显着的辅助效果和诊断准确性的提高。

值得注意的是,NEJM CPC 并不代表日常临床实践。它们是仅针对数百人的不寻常病例报告,因此为探讨公平或公平等重要问题提供了有限的范围。

医疗保健领域大胆而负责任的研究

在世界各地,获得临床专业知识的机会仍然稀缺。虽然人工智能在特定的临床应用中显示出了巨大的前景,但参与临床实践的动态、对话式诊断过程需要人工智能系统尚未展示的许多功能。医生不仅拥有知识和技能,还致力于遵守无数原则,包括安全和质量、沟通、伙伴关系和团队合作、信任和专业精神。在人工智能系统中实现这些属性是一项鼓舞人心的挑战,应该负责任地、谨慎地对待。AMIE 是我们对“可能性的艺术”的探索,这是一个仅供研究的系统,用于安全地探索未来的愿景,其中人工智能系统可能会更好地与委托我们护理的熟练临床医生的属性保持一致。它只是早期的实验工作,而不是产品,并且有一些局限性,我们认为值得进行严格和广泛的进一步科学研究,以设想一个对话式、同理心和诊断式人工智能系统可能变得安全、有用和易于使用的未来。

参考:

AMIE: A research AI system for diagnostic medical reasoning and conversations

相关文章:

谷歌最新医学领域LLM大模型:AMIE

2024年1月11日Google 研究院发布最新医疗大模型AMIE&#xff1a;用于诊断医学推理和对话的研究人工智能系统。 文章链接&#xff1a;Articulate Medical Intelligence Explorer (AMIE) giuthub&#xff1a;目前代码未开源 关于大模型之前有过一篇总结&#xff1a;大语言模型(L…...

路由器02_静态路由DHCP

一、静态路由 &#xff11;、静态路由特点 由管理员手工配置&#xff0c;是单向的&#xff0c;缺乏灵活性 &#xff12;、默认路由 默认路由是一种比较特殊静态路由&#xff0c;一般用于末节&#xff08;末梢&#xff09;网络&#xff0c;直接指定目标为任何地方 二、静态…...

Mysql 递归查询所有子节点,hutool树形结构封装

工作中经常会有像目录&#xff0c;部门的多级结构&#xff0c;记录一下查询自己点的方式&#xff0c;留着复制粘贴 方式1&#xff1a; SELECT* FROMcus_department WHEREFIND_IN_SET( id, pid ) > 0;UNIONSELECTcd.* FROM( SELECT * FROM cus_department WHERE pid IS …...

【代码随想录04】24. 两两交换链表中的节点 19. 删除链表的倒数第 N 个结点 面试题 02.07. 链表相交 142. 环形链表 II

24. 两两交换链表中的节点 题目描述 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 做题思路 可以设置虚拟头结点cur和画图…...

Pandas实战100例 | 案例 25: 计算相关系数

案例 25: 计算相关系数 知识点讲解 在统计分析中&#xff0c;了解变量之间的关系是非常重要的。相关系数是衡量变量之间线性相关程度的一种方法。Pandas 提供了 corr 方法来计算列之间的相关系数。 相关系数: 相关系数的值范围在 -1 到 1 之间。接近 1 表示正相关&#xff0…...

vue文本识别“\n“换行问题的解决方式

一、通过 css属性 实现 设置 white-space: pre-wrap; 代码如下&#xff1a; <div style"white-space: pre-wrap;">({含有\n的字符串}}</div> 扩展&#xff1a; white-space属性值&#xff1a; 值描述normal默认。空白会被浏览器忽略。pre空白会被浏…...

【QT-UI】

1.使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 #include "mainwindow.h" #include "ui_mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), …...

MyBatisPlus逆向工程

依赖 <!--Mybatis-plus逆向生成器依赖--><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-generator</artifactId><version>3.4.1</version></dependency><!--Mybatis-plus逆向生成器的Freema…...

创建ESP32开源WiFi MAC(介质访问控制)层

内置WiFi 内置的 WiFi.h 库将使我们能够轻松使用 ESP32 板的 WiFi 功能。 连接到 Wi-Fi 接入点&#xff1a; #include <WiFi.h>const char* ssid "yourNetworkName"; const char* password "yourNetworkPassword";void setup(){Serial.begin(11…...

LeetCode 2723. 两个 Promise 对象相加

给定两个 promise 对象 promise1 和 promise2&#xff0c;返回一个新的 promise。promise1 和 promise2 都会被解析为一个数字。返回的 Promise 应该解析为这两个数字的和。 示例 1&#xff1a; 输入&#xff1a; promise1 new Promise(resolve > setTimeout(() > res…...

Flutter--常用技术文档

配置 清华大学flutter镜像 export PUB_HOSTED_URLhttps://mirrors.tuna.tsinghua.edu.cn/dart-pub export FLUTTER_STORAGE_BASE_URLhttps://mirrors.tuna.tsinghua.edu.cn/flutter 社区镜象 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_UR…...

行分类问题

行分类问题可以应用于多个领域和问题&#xff0c;其中一些示例包括&#xff1a; 文本分类&#xff1a; 在自然语言处理中&#xff0c;可以将文本分为不同的类别&#xff0c;例如情感分析、主题分类等。每个文本可以被视为一个“行”&#xff0c;而分类任务就是对每个行进行分类…...

java常见面试题:如何使用Java进行XML解析和生成?

在Java中&#xff0c;有几种不同的方式可以进行XML的解析和生成。以下是使用Java进行XML解析和生成的基本步骤&#xff1a; 解析XML&#xff1a; DOM (Document Object Model): 这是最常用的解析方法。它将整个XML文档加载到内存中&#xff0c;并允许你通过编程方式遍历和操作它…...

【LabVIEW FPGA入门】LabVIEW FPGA实现I2S解码器

该示例演示了如何使用 LabVIEW FPGA 解码 IS 信号。该代码可用于大多数支持高速数字输入的LabVIEW FPGA 目标&#xff08;例如R 系列、CompactRIO&#xff09;。IS 用于对系统和组件内的数字音频数据进行编码。例如&#xff0c;MP3 播放器或 DVD 播放器内部的数字音频通常使用 …...

linux 安装sipp

sudo apt-get install libnet1-dev libpcap0.8-dev openssl libssl-dev 从 sipp - Browse /sipp/3.2 at SourceForge.net 下载最新版的sipp.svn.tar.gz&#xff0c;解压之后就得到一个rpm文件 tar -zxvf sipp.svn.tar.gz cd sipp make pcapplay_ossl...

c++最值查找

目录 min和max函数 min_element和max_element 例 nth_element函数 例 例题 题目描述 输入描述 输出描述 解 min和max函数 只能传入两个值或一个列表 时间复杂度为O(1),数组O(n)&#xff0c;n为元素个数 min_element和max_element min_element(st,ed)返回地址[st,…...

xtu-c语言考试复习-2

1223 确实写不出&#xff0c;数据远超过64位&#xff0c;难道用数组存吗&#xff0c;但是不好计算&#xff0c;想到的思路是取模&#xff0c;一边计算&#xff0c;一边取模&#xff0c;就不会超过数据范围&#xff0c;但是数学原理没懂&#xff0c;所以做不出来 看了下自己以…...

MySQL决战:MySQL数据导入导出

目录 前言 一.navact数据导入导出&#xff08;第三方工具&#xff09; 1.导入数据 2.数据导出 二. mysqldump命令导入导出数据 1.mysqldump介绍 2.数据导出 3.数据导入 三.load data file进行数据导入导出&#xff08;只限于单表&#xff09; 1.数据导出 增加导出权…...

Unity 面试篇|(二)Unity基础篇 【全面总结 | 持续更新】

目录 1.Unity3d脚本从唤醒到销毁有着一套比较完整的生命周期&#xff0c;列出系统自带的几个重要的方法。2.Unity3D中的碰撞器和触发器的区别&#xff1f;3.物体发生碰撞的必要条件&#xff1f;4.简述Unity3D支持的作为脚本的语言的名称&#xff1f;5. .Net与Mono的关系&#x…...

TIDB的忘了root用户密码和数据库密码解决办法

方法一&#xff1a; 1、修改配置文件重启tidb&#xff0c;无密码登录修改root密码 找到配置文件 tidb.toml &#xff0c;在[security] 作用域下增加如下配置&#xff1a; [security] skip-grant-tabletrue 重启tidb&#xff1a; sh run_tidb.sh 2、重启后&#xff0c;就可以无密…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...