当前位置: 首页 > news >正文

xtu-c语言考试复习-2

1223

确实写不出,数据远超过64位,难道用数组存吗,但是不好计算,想到的思路是取模,一边计算,一边取模,就不会超过数据范围,但是数学原理没懂,所以做不出来

看了下自己以前写的博客,确实是取模,以后积累经验,就是如果超过了数据范围,就直接用取模运算来控制这个范围

#include<stdio.h>
#include<stdbool.h>int main()
{int t;scanf("%d",&t);while(t--){int m;scanf("%d",&m);int k=1;int cnt=1;bool flag=false;for(int i=1;i<1000000;i++){k%=m;if(k==0)	{printf("%d\n",cnt);flag=true;break;}k=k*10+1;cnt++;}if(!flag)	puts("0");}return 0;
}

看自己博客又敲了一遍,WA了一次,因为我把循环的上界设置为了输入的数字,但是是不可取的,好吧,又试了一下,把上界设成输入的数字,取到等于号就可以过了

1308

样例能过,但是WA,实在想不通

#include<stdio.h>int main()
{int t;scanf("%d",&t);while(t--){int n;scanf("%d",&n);int cnt1=0,cnt2=0;while(n!=1){int temp=n%2;int m=n-temp;m/=2;cnt1++;cnt2+=m;n=n-m;}printf("%d %d\n",cnt1,cnt2);}return 0;
}

确实是自己没有考虑到位,应该是没有考虑需要比赛的人数是偶数的情况,先补上一份按照之前博客写的代码,再看下能不能把上面的代码改对

#include<stdio.h>int main()
{int t;scanf("%d",&t);while(t--){int n;scanf("%d",&n);int cnt1=0,cnt2=0;int m=0;while(n>1){m=1;while(m<n)	m*=2;if(m!=n)	m/=2;cnt1++;cnt2+=m/2;n=n-m/2;}//printf("%d\n",m);printf("%d %d\n",cnt1,cnt2);}return 0;
}

改了一下还是改不出来,想不明白

相关文章:

xtu-c语言考试复习-2

1223 确实写不出&#xff0c;数据远超过64位&#xff0c;难道用数组存吗&#xff0c;但是不好计算&#xff0c;想到的思路是取模&#xff0c;一边计算&#xff0c;一边取模&#xff0c;就不会超过数据范围&#xff0c;但是数学原理没懂&#xff0c;所以做不出来 看了下自己以…...

MySQL决战:MySQL数据导入导出

目录 前言 一.navact数据导入导出&#xff08;第三方工具&#xff09; 1.导入数据 2.数据导出 二. mysqldump命令导入导出数据 1.mysqldump介绍 2.数据导出 3.数据导入 三.load data file进行数据导入导出&#xff08;只限于单表&#xff09; 1.数据导出 增加导出权…...

Unity 面试篇|(二)Unity基础篇 【全面总结 | 持续更新】

目录 1.Unity3d脚本从唤醒到销毁有着一套比较完整的生命周期&#xff0c;列出系统自带的几个重要的方法。2.Unity3D中的碰撞器和触发器的区别&#xff1f;3.物体发生碰撞的必要条件&#xff1f;4.简述Unity3D支持的作为脚本的语言的名称&#xff1f;5. .Net与Mono的关系&#x…...

TIDB的忘了root用户密码和数据库密码解决办法

方法一&#xff1a; 1、修改配置文件重启tidb&#xff0c;无密码登录修改root密码 找到配置文件 tidb.toml &#xff0c;在[security] 作用域下增加如下配置&#xff1a; [security] skip-grant-tabletrue 重启tidb&#xff1a; sh run_tidb.sh 2、重启后&#xff0c;就可以无密…...

QT基础篇(4)QT5基本对话框

1.标准文件对话框类 在QT5中&#xff0c;可以使用QFileDialog类来创建标准文件对话框。QFileDialog类提供了一些方法和属性&#xff0c;用于选择文件和目录。 常用的方法和属性如下&#xff1a; getOpenFileName()&#xff1a;打开文件对话框&#xff0c;选择一个文件。 get…...

Springboot项目Nacos做配置中心

Springboot项目Nacos做配置中心 说明安装2.Springboot整合使用Nacos3.问题处理 说明 文档参考 Nacos Spring Boot 安装 查看nacos镜像 docker search nacos 下载镜像 docker pull nacos/nacos-server启动naocs镜像 docker run --env MODEstandalone --name nacos -d -p 8…...

SpringSecurity入门demo(三)多用户身份认证

WebSecurityConfigurerAdapter配置文件在 configure(AuthenticationManagerBuilder auth) 方法中完成身份认证。前面的demo都只有一个用户&#xff0c;security中使用UserDetailsService做为用户数据源 &#xff0c;所以可以实现UserDetailsService 接口来自定义用户。实现方…...

【设计模式-02】Strategy策略模式及应用场景

一、参考资料 Java 官方文档 Overview (Java SE 18 & JDK 18)module indexhttps://docs.oracle.com/en/java/javase/18/docs/api/index.html Java中使用到的策略模式 Comparator、comparable Comparator (Java SE 18 & JDK 18)declaration: module: java.base, pa…...

ssh远程登陆

一、ssh远程登陆的概念 SSH&#xff08;Secure Shell&#xff09;是一种安全通道协议&#xff0c;主要用来实现字符界面的远程登录、远程 复制等功能。SSH 协议对通信双方的数据传输进行了加密处理&#xff0c;其中包括用户登录时输入的用户口令&#xff0c;SSH 为建立在应用层…...

go如何终止多个for select循环嵌套

空山新雨后&#xff0c;天气晚来秋。 目录 分类说明 总结 分类说明 for select循环嵌套&#xff0c;如何终止&#xff1f;上代码&#xff1a; stop : make(chan struct{})go func() {for i : 1; i < 3; i {fmt.Println("writed ", i)time.Sleep(time.Second * …...

nginx(1.13.7)首次安装出现:【make: *** 没有规则可以创建“default”需要的目标“build” 问题】解决措施

目录 前言&#xff1a; 一.龙蜥&#xff08;Anolis&#xff09;操作系统上安装GCC 1.安装gcc 2.检验安装 二.安装出现 make&#xff1a; *** 没有规则可以创建“default”需要的目标“build” 问题 1.解压安装nginx 2.安装出现问题展示 3.解决措施 4.重新编译进行安装 5…...

2024.1.8 关于 Redis 数据类型 Zset 集合命令、编码方式、应用场景

目录 引言 Zset 集合命令 ZINTERSTORE ZUNIONSTORE Zset 编码方式 Zset 应用场景 排行榜系统 引言 在 Redis 中集合间操作无非就是 交集、并集、差集 Set 类型与之相对应的操作命令为 sinter、sunion、sdiff 注意&#xff1a; 从 Redis 6.2 版本开始&#xff0c;Zset 命…...

ffmpeg[学习(四)](代码实现) 实现音频数据解码并且用SDL播放

0、作者杂谈 CSDN大多数都是落后的&#xff0c;要么是到处复制粘贴的&#xff0c;对于初学者我来说困惑了很久&#xff0c;大多数CSDN文章都是使用旧的API &#xff0c;已经被否决了&#xff0c;于是我读一些官方文档&#xff0c;和一些开源项目音视频的输出过程&#xff0c;写…...

C++ 字符串哈希 || 字符串前缀哈希法

字符串Hash就是构造一个数字使之唯一代表一个字符串。但是为了将映射关系进行一一对应&#xff0c;也就是&#xff0c;一个字符串对应一个数字&#xff0c;那么一个数字也对应一个字符串。 用字符串Hash的目的是&#xff0c;我们如果要比较一个字符串&#xff0c;我们不用直接比…...

【java】项目部署liunx服务器的简单步骤

在Linux服务器上部署Java项目通常涉及到一系列步骤&#xff0c;下面是一个基本的部署流程&#xff0c;具体步骤可能会根据项目和服务器环境的不同而有所调整&#xff1a; 1. 准备工作&#xff1a; 1.1 安装Java环境&#xff1a; 在Linux服务器上安装Java运行环境&#xff0c;…...

深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解&#xff0c;如有遗漏或错误&#xff0c;欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力&#xff0c;那下一步我们还…...

鸿蒙开发现在就业前景怎样?

随着科技的不断进步&#xff0c;鸿蒙系统逐渐崭露头角&#xff0c;成为智能设备领域的一颗新星。作为华为自主研发的操作系统&#xff0c;鸿蒙系统拥有着广阔的市场前景和就业机会。那么&#xff0c;鸿蒙开发的就业前景究竟怎样呢&#xff1f; 一、市场需求持续增长 随着鸿蒙…...

试用统信服务器操作系统UOS 20

作者&#xff1a;田逸&#xff08;formyz&#xff09; 试用统信Linux操作系统UOS&#xff0c;想了解一下用已有的Linux经验能否轻松驾驭它。以便在某些场景下&#xff0c;可以多一种选择。本次试验在Proxmox VE 8&#xff08;以下简称PVE 8&#xff09;平台下进行&#xff0c;采…...

[情商-11]:人际交流的心理架构与需求层次模型

目录 前言&#xff1a; 一、心理架构 1.1 个体生理层 1.2 个体心理层 1.3 点对点人际交流层 1.4 社会网络层 1.5 社会价值层 二、人的需求层次模型 2.1 需求&#xff08;欲望&#xff09;层次模型 2.2 基因与人需求之间的关系 2.3 个体生理需求 2.4 个体的心理需求…...

【.NET Core】Lazy<T> 实现延迟加载详解

【.NET Core】Lazy 实现延迟加载详解 文章目录 【.NET Core】Lazy<T> 实现延迟加载详解一、概述二、Lazy<T>是什么三、Lazy基本用法3.1 构造时使用默认的初始化方式3.2 构造时使用指定的委托初始化 四、Lazy.Value使用五、Lazy扩展用法5.1 实现延迟属性5.2 Lazy实现…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...