【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023)
论文:DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation
代码:https://sstzal.github.io/DiffTalk/
出处:CVPR2023
特点:需要音频+对应人物的视频来合成新的说话头视频,嘴部抖动严重
一、背景
talking head 合成任务相关的工作最近都集中于提升合成视频的质量或者提升模型的泛化性,很少有工作聚焦于同时提升这两个方面,而这对实际的使用很重要
所以,本文作者引入扩散模型来实现 audio-driven talking head,同时使用的声音信号、面部、关键点来作为驱动信号,可以在不同的的说话人上进行泛化
当前的研究现状:
- 2D:主要是基于 GAN 来实现 audio-to-lip 的驱动,也就是主要是声音到嘴型的驱动,不同的模特都可以被驱动,能泛化于不同的模特之间(因为主要是驱动的嘴巴,其他部分还是保持视频原状即可)。但 GAN 训练容易坍塌,且生成的视频分辨率不高,看着比较模糊
- 3D:如 NeRF,能够生成看起来质量较高的视频,但很难泛化,一般一个模型只能支持一个模特的渲染,泛化性较差
因此,作者选择了更好训练的扩散模型,将 audio-driven talking head 的合成看做一个 audio-driven 的连续时序的去噪过程
如图 1 所示,输入一个语音序列,DiffTalk 可以根据一个人物的一段视频来生成这个人物的新的说话视频
二、方法
DiffTalk 的整体结构如图 2 所示
2.1 针对 Talking head 的条件扩散模型
现在潜在扩散模型 LDM 应用很广泛,所以这里作者使用的也是 LDM
作者使用了一对儿训练好的 image encoder E I E_I EI 和 decoder D I D_I DI,在后续训练的时候固定权重不做训练
基于此,输入的人脸图片就会被编码到隐空间 z 0 = E I ( x ) ∈ R h × w × 3 z_0=E_I(x) \in R ^{h \times w \times 3} z0=EI(x)∈Rh×w×3,h 和 w 是原图大小 H 和 W 经过压缩后的大小,压缩倍数是下采样参数
一般的 LDM 都是一个时间序列的 UNet 去噪网络 M M M,学习的是反向去噪过程:
但在本文中,给定一个人物的 source identity 和 driven audio,本文的目标是训练一个模型能够生成和语音匹配的说话头视频,且要保留原始 identity 信息
所以,语音信号是一个基础条件来控制如何去噪
2.2 Identity-Preserving Model Generalization
在学习音频到唇部翻译的同时,另一个重要任务是在保留源图像中完整身份信息的同时实现模型的泛化。泛化的身份信息包括面部外观、头部姿态和图像背景。
为此,作者设计了一个参考机制,使模型能够泛化到训练中未见过的新个体
如图 2 所示,选择一个随机的源身份面部图像 xr 作为参考,其中包含外观和背景信息。为了防止训练中的捷径,会限制选择的 xr 与目标图像相距 60 帧以上。然而,由于真实的面部图像与 xr 的姿态完全不同,模型预期在没有任何先验信息的情况下将 xr 的姿态转移到目标面部上。
因此,作者将掩蔽的真实图像 xm 作为另一个参考条件来提供目标头部姿态的指导。xm 的嘴部区域被完全掩盖,以确保网络看不到真实的唇部动作。这样,参考 xr 专注于提供嘴部外观信息,这也降低了训练的难度。
同时,还使用 MLP encoder E L E_L EL 对面部关键点(除过嘴部)进行了编码,也作为条件
所以整个输入条件就变成了:
整个优化目标就是:
三、效果
数据:
- HDTF 数据集,包括 16 小时视频,分辨率为 720P 或 1080P 的,超过 300 个人物
- 作者随机选择了 100 个视频,抽取了约 100 min 时长的视频作为训练
- resize 输入数据到 256x256,隐空间编码大小为 64x64x3,如果要训练大分辨率模型,输入是 512x512,隐空间编码大小同样为 64x64x3
相关文章:

【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023)
论文:DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation 代码:https://sstzal.github.io/DiffTalk/ 出处:CVPR2023 特点:需要音频对应人物的视频来合成新的说话头视频,嘴部抖…...

完成源示例
本主题演示如何创作和使用自己的完成源类,类似于 .NET 的 TaskCompletionSource。 completion_source 示例的源代码 下面的列表中的代码作为示例提供。 其目的是说明如何编写自己的版本。 例如,支持取消和错误传播不在此示例的范围内。 #include <w…...
业务和流程的关系
背景 概念不清,沟通就容易出现问题,最可怕会出现跑偏情况如何解决,数字化落地过程,程序是死的,最怕灵活,所以在沟通和编码,设计中,很重要的一点就是解决概念,澄清问题&a…...

【河海大学论文LaTeX+VSCode全指南】
河海大学论文LaTeXVSCode全指南 前言一、 LaTeX \LaTeX{} LATEX的安装二、VScode的安装三、VScode的配置四、验证五、优化 前言 LaTeX \LaTeX{} LATEX在论文写作方面具有传统Word无法比拟的优点,VScode作为一个轻量化的全功能文本编辑器,由于其极强的…...

学习python仅此一篇就够了(文件操作:读,写,追加)
python文件操作 文件编码 编码技术即:翻译的规则,记录了如何将内容翻译成二进制,以及如何将二进制翻译回可识别内容。 计算机中有许多可用编码: UTF-8 GBK BUG5 文件的读取操作 open()函数 在pyth…...
vue中 ref 和 $refs的使用
1. 作用 利用 ref 和 $refs 可以用于 获取 dom 元素, 或 组件实例 2. 获取 dom 使用步骤: 2.1 目标标签添加属性 :ref <div ref"chartRef">我是渲染图表的容器</div>2.2 通过$ref:获取标签 mounted() {console.log(this.$re…...

Centos7升级openssl到openssl1.1.1
Centos7升级openssl到openssl1.1.1 1、先查看openssl版本:openssl version 2、Centos7升级openssl到openssl1.1.1 升级步骤 #1、更新所有现有的软件包列表并安装最新的软件包: $sudo yum update #2、接下来,我们需要从源代码编译和构建OpenS…...

uniapp中实现H5录音和上传、实时语音识别(兼容App小程序)和波形可视化
文章目录 Recorder-UniCore插件特性集成到项目中调用录音上传录音ASR语音识别 在uniapp中使用Recorder-UniCore插件可以实现跨平台录音功能,uniapp自带的recorderManager接口不支持H5、录音格式和实时回调onFrameRecorded兼容性不好,用Recorder插件可避免…...

HashMap集合万字源码详解(面试常考)
文章目录 HashMap集合1.散列2.hashMap结构3.继承关系4.成员变量5.构造方法6.成员方法6.1增加方法6.2将链表转换为红黑树的treeifyBin方法6.3扩容方法_resize6.3.1扩容机制6.3.2源码resize方法的解读 6.4 删除方法(remove)6.5查找元素方法(get)6.6遍历HashMap集合几种方式 7.初始…...
LeetCode1124. Longest Well-Performing Interval
文章目录 一、题目二、题解 一、题目 We are given hours, a list of the number of hours worked per day for a given employee. A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than 8. A well-performing in…...

如何使用手机公网远程访问本地群辉Video Station中视频文件【内网穿透】
最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 1.使用环境要求:2.下载群晖videostation&am…...

事件分析应急响应-Server2229(环境+解析)
任务环境说明: 服务器场景:Server2229(开放链接)用户名:root,密码:...

SpringCloud:微服务
文章目录 微服务服务架构演变单例架构(集中式架构)分布式架构 微服务SpringCloud 微服务 服务架构演变 单例架构(集中式架构) 单例架构: 将业务的所有功能集中在一个项目中开发,打成一个包部署 优点&…...
拥抱Guava之集合操作
深入Guava集合操作 在Java开发中,Google Guava库是处理集合的强大工具。起源于Google内部需求,Guava以简洁性、性能优化为理念,提供高效不可变集合和实用工具类。本文深入剖析Guava的核心功能,为开发者呈现集合操作的全新视角&am…...

运算放大器相关知识总结(1)
1、 前言 最近做了一个小项目,这个项目是研发一款阻抗测量仪。这个阻抗测量仪可以测量人体在不同频率下的生物电阻抗,该设备的核心是模拟电路,技术难点是减小模拟电路噪声。该项目前前忙了2个多月,借着研发这个项目的机会把自己掌…...

ZMQ_REQ\REP模式
文章内容: 学习ZMQ库中REQ\REP模式相关的内容 简介 应答模式:REQ(客户端)和REP(服务端) 典型的一问一答协议,即客户端需要首先发送hello,服务器则返回word,若客户端发…...

机器人跟踪性能量化指标
衡量机械臂关节轨迹跟踪控制的性能可以通过以下几个方面来进行: 跟踪精度:这是衡量机械臂关节轨迹跟踪控制性能的最重要的指标。它反映了机械臂实际运动轨迹与期望运动轨迹之间的偏差。跟踪精度越高,说明机械臂的控制性能越好。运动范围&…...

【GitHub项目推荐--开源的坦克大战】【转载】
坦克大战当年红遍大江南北,很多和我一样的九零后应该都有着对这个游戏的记忆。现在显示器分辨率越来越高,使用矢量图来实现像素风格游戏,可以获得非常高的展现质量。 这个项目是作者肥超花了很长时间折腾的复刻版本,所有元素都使…...

06、Kafka ------ 各个功能的作用解释(ISR 同步副本、非同步副本、自动创建主题、修改主题、删除主题)
目录 CMAK 各个功能的作用解释★ ISR副本 (同步副本)★ 非同步副本★ 自动创建主题★ 修改主题★ 删除主题 CMAK 各个功能的作用解释 ★ ISR副本 (同步副本) 简单来说 ,ISR 副本 就是 Kafka 认为与 领导者副本 同步的副本。 ISR࿰…...
Spring Security实现详解
一、WebSecurityConfigurerAdapter 总配置类: 1、介绍:配置类 2、主要方法: (1)configure(HttpSecurity http) protected void configure(HttpSecurity http) throws Exception {this.logge…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...