当前位置: 首页 > news >正文

element plus自定义组件表单校验

方式一:

import { formContextKey, formItemContextKey } from "element-plus";// 获取 el-form 组件上下文
const formContext = inject(formContextKey, void 0);
// 获取 el-form-item 组件上下文
const formItemContext = inject(formItemContextKey, void 0);formItemContext?.prop && formContext?.validateField([formItemContext.prop as string]);

方式二:

// 子组件核心流程
import { useFormItem } from "element-plus";
const { formItem } = useFormItem();
const emit = defineEmits(["update:value"]);const content = computed({get() {return props.value;},set(v: string) {// 同步父组件值emit("update:value", v);// 触发父组件定义的rulesformItem?.validate?.("blur").catch(err => {console.log(err);});}
});// 父组件 rules
<el-form-item label="回复内容" prop="content" :rules="requiredRules"><!-- 父组件调用 --><tinyMce v-model:value="form.content"></tinyMce>
</el-form-item>const requiredRules = [{ required: true, message: "请填写", trigger: "blur" }];

element ui 自定义组件校验方式,详见以下链接地址
使用element Form 自带校验功能,实现上传控件的校验_element form 校验mixin-CSDN博客​​​​​

ant design vue 1.x 自定义组件校验方式,详见以下链接​​​​​​​ant design vue1.x 自定义校验_1.x ant-design-vue date-range-picker 校验-CSDN博客

相关文章:

element plus自定义组件表单校验

方式一&#xff1a; import { formContextKey, formItemContextKey } from "element-plus";// 获取 el-form 组件上下文 const formContext inject(formContextKey, void 0); // 获取 el-form-item 组件上下文 const formItemContext inject(formItemContextKey, …...

C //练习 4-13 编写一个递归版本的reverse(s)函数,以将字符串s倒置。

C程序设计语言 &#xff08;第二版&#xff09; 练习 4-13 练习 4-13 编写一个递归版本的reverse(s)函数&#xff0c;以将字符串s倒置。 注意&#xff1a;代码在win32控制台运行&#xff0c;在不同的IDE环境下&#xff0c;有部分可能需要变更。 IDE工具&#xff1a;Visual S…...

DNS解析和主从复制

一、DNS名称解析协议 二、DNS正向解析 三、DNS主从复制 主服务器 从服务器...

光猫(无限路由器)插入可移动硬盘搭建简易版的NAS

1.场景分析 最近查询到了许多有关NAS的资料&#xff0c;用来替代百度云盘等确实有很多优势&#xff0c;尤其是具有不限速&#xff08;速度看自己配置&#xff09;、私密性好、一次投入后续只需要电费即可等优势。鉴于手上没有可以用的资源-cpu、机箱、内存等&#xff0c;查询到…...

SpringIOC之support模块GenericGroovyApplicationContext

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…...

Awesome 3D Gaussian Splatting Resources

GitHub - MrNeRF/awesome-3D-gaussian-splatting: Curated list of papers and resources focused on 3D Gaussian Splatting, intended to keep pace with the anticipated surge of research in the coming months. 3D Gaussian Splatting简明教程 - 知乎...

【镜像压缩】linux 上 SD/TF 卡镜像文件压缩到实际大小的简单方法(树莓派、nvidia jetson)

文章目录 1. 备份 SD/TF 卡为镜像文件2. 压缩镜像文件2.1. 多分区镜像文件的压缩&#xff08;树莓派、普通 linux 系统等&#xff09;2.2. 单分区镜像文件的压缩&#xff08;Nvidia Jetson Nano 等&#xff09; 3. 还原镜像文件到 SD/TF 卡4. 镜像还原后处理4.1. 镜像分区调整4…...

Zookeeper 和 naocs的区别

Nacos 和 ZooKeeper 都是服务发现和配置管理的工具&#xff0c;它们的主要区别如下&#xff1a;功能特性&#xff1a;Nacos 比 ZooKeeper 更加强大&#xff0c;Nacos 支持服务发现、动态配置、流量管理、服务治理、分布式事务等功能&#xff0c;而 ZooKeeper 主要用于分布式协调…...

2-6基础算法-快速幂/倍增/构造

文章目录 一.快速幂二.倍增三.构造 一.快速幂 快速幂算法是一种高效计算幂ab的方法&#xff0c;特别是当b非常大时。它基于幂运算的性质&#xff0c;将幂运算分解成一系列的平方操作&#xff0c;以此减少乘法的次数。算法的核心在于将指数b表示为二进制形式&#xff0c;并利用…...

行业内参~移动广告行业大盘趋势-2023年12月

前言 2024年&#xff0c;移动广告的钱越来越难赚了。市场竞争激烈到前所未有的程度&#xff0c;小型企业和独立开发者在巨头的阴影下苦苦挣扎。随着广告成本的上升和点击率的下降&#xff0c;许多原本依赖广告收入的创业者和自由职业者开始感受到前所未有的压力。 &#x1f3…...

【笔记】书生·浦语大模型实战营——第四课(XTuner 大模型单卡低成本微调实战)

【参考&#xff1a;tutorial/xtuner/README.md at main InternLM/tutorial】 【参考&#xff1a;(4)XTuner 大模型单卡低成本微调实战_哔哩哔哩_bilibili-【OpenMMLab】】 总结 学到了 linux系统中 tmux 的使用 了解了 XTuner 大模型微调框架的使用 pth格式参数转Hugging …...

开源的Immich自建一个堪比 iCloud 的私有云相册和备份服务

源码地址 GitHub - immich-app/immich: Self-hosted photo and video backup solution directly from your mobile phone. 1.创建目录 mkdir /data/immich && cd /data/immich 2.下载docker-compose文件和.env文件 wget https://github.com/immich-app/immich/relea…...

SPI通信讲解

了解SPI通信对于我们了解通信有非常重要的意义。 SPI&#xff08;Serial Peripheral Interface&#xff09;是由Motorola公司&#xff08;摩托罗拉&#xff09;开发的一种通用数据总线 四根通信线&#xff1a; SCK&#xff08;Serial Clock&#xff09;&#xff1a;时钟线&a…...

本地一键部署grafana+prometheus

本地k8s集群内一键部署grafanaprometheus 说明&#xff1a; 此一键部署grafanaPrometheus已包含&#xff1a; victoria-metrics 存储prometheus-servergrafanaprometheus-kube-state-metricsprometheus-node-exporterblackbox-exporter grafana内已导入基础的dashboard【7个…...

NIO核心依赖多路复用小记

NIO允许一个线程同时处理多个连接&#xff0c;而不会因为一个连接的阻塞而导致其他连接被阻塞。核心是依赖操作系统的多路复用机制。 操作系统的多路复用机制 多路复用是一种操作系统的 I/O 处理机制&#xff0c;允许单个进程&#xff08;或线程&#xff09;同时监视多个输入…...

如何彻底卸载 Microsoft Edge?

关闭 Microsoft Edge 浏览器和所有正在运行的进程。 按下 Ctrl Shift Esc 键打开任务管理器。在任务管理器中&#xff0c;找到所有正在运行的 Microsoft Edge 进程。右键单击每个进程&#xff0c;然后选择“结束任务”。 导航至 Microsoft Edge 的安装目录。 默认情况下&…...

JavaScript-对象-笔记

1.字面量创建对象、对象的使用 对象就是一组 属性和方法的集合 属性&#xff1a; 特征 相当于变量 静态 是什么 方法&#xff1a; 行为 相当于函数 动态 干什么 创建对象 创建对象的第一种&#xff1a;使用字面量 {} 对象中的元素是键值对 使用逗号隔开 键:值 的形式 var 对象名…...

java 运算符 选择语句

1&#xff1a;运算符 运算符&#xff1a;对字面量或者变量进行操作的符号 表达式&#xff1a;用运算符把字面量或者变量连接起来符合java语法的式子就可以称为表达式。不同运算符连接的表达式体现的是不同类型的表达式。 举例说明&#xff1a;** int a 10; int b 20; in…...

CNN:Convolutional Neural Network(上)

目录 1 为什么使用 CNN 处理图像 2 CNN 的整体结构 2.1 Convolution 2.2 Colorful image 3 Convolution v.s. Fully Connected 4 Max Pooling 5 Flatten 6 CNN in Keras 原视频&#xff1a;李宏毅 2020&#xff1a;Convolutional Neural Network 1 为什么使用…...

将Android应用修改为鸿蒙应用的工作

将Android应用修改为鸿蒙&#xff08;HarmonyOS&#xff09;应用需要进行一系列主要的工作。以下是在进行这一转换过程中可能需要进行的主要工作&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.项目…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...