当前位置: 首页 > news >正文

tensorflow07——使用tf.keras搭建神经网络(Sequential顺序神经网络)——六步法——鸢尾花数据集分类

使用tf.keras搭建顺序神经网络
六步法——鸢尾花数据集分类

01 导入相关包
02 导入数据集,打乱顺序
03 建立Sequential模型
04 编译——确定优化器,损失函数,评测指标(用哪一种准确率)
05 训练模型——把各项参入填入模型
06 总结——打印网络结构


# 01
import tensorflow as tf
from sklearn import datasets
import numpy as np# 02
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
# 测试集可以在此处按照上述方法划分
# 本案例把测试集放到训练过程fit中,按照比例直接从训练集中划分(validation_split)# 乱序步骤
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)# 03
model = tf.keras.models.Sequential([# 定义全连接层tf.keras.layers.Dense(3,activation='softmax',kernel_regularizer=tf.keras.regularizers.l2())
])# 04
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])# 05
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2,validation_freq=20)# 06
model.summary()

输出结果

Train on 120 samples, validate on 30 samples
Epoch 1/500
120/120 [==============================] - 0s 3ms/sample - loss: 2.2022 - sparse_categorical_accuracy: 0.3833
Epoch 2/500
120/120 [==============================] - 0s 36us/sample - loss: 1.0013 - sparse_categorical_accuracy: 0.6083
Epoch 3/500
120/120 [==============================] - 0s 36us/sample - loss: 0.8497 - sparse_categorical_accuracy: 0.6333
。
。
此处省略500回合
。
。
。> Epoch 496/500 120/120 [==============================] - 0s
> 21us/sample - loss: 0.3384 - sparse_categorical_accuracy: 0.9583 Epoch
> 497/500 120/120 [==============================] - 0s 22us/sample -
> loss: 0.3442 - sparse_categorical_accuracy: 0.9750 Epoch 498/500
> 120/120 [==============================] - 0s 22us/sample - loss:
> 0.3394 - sparse_categorical_accuracy: 0.9583 Epoch 499/500 120/120 [==============================] - 0s 21us/sample - loss: 0.3394 -
> sparse_categorical_accuracy: 0.9333 Epoch 500/500 120/120
> [==============================] - 0s 168us/sample - loss: 0.4425 -
> sparse_categorical_accuracy: 0.8583 - val_loss: 0.3130 -
> val_sparse_categorical_accuracy: 0.9667 Model: "sequential"
> _________________________________________________________________ Layer (type)                 Output Shape              Param #   
> ================================================================= dense (Dense)                multiple                  15        
> ================================================================= Total params: 15 Trainable params: 15 Non-trainable params: 0
> ________________________________________________________________

由于sequential是顺序模型,不方便在中间加入其他步骤
可以采取类封装的形式,新建一个类,将整个神经网络模型封装装起来
里面设置两个函数方法_ _ init _ _和call
_ _ init _ _用于定义网络结构块
call用于实现前向传播

import tensorflow as tf
from tensorflow.keras.layers import Dense #新增
from tensorflow.keras import Model		  #新增
from sklearn import datasets
import numpy as npx_train = datasets.load_iris().data
y_train = datasets.load_iris().targetnp.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)#类名 IrisModel
class IrisModel(Model):def __init__(self):super(IrisModel, self).__init__()#定义——网络结构块self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())def call(self, x):#调用——网络结构快,实现前向传播y = self.d1(x)return ymodel = IrisModel()model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()

相关文章:

tensorflow07——使用tf.keras搭建神经网络(Sequential顺序神经网络)——六步法——鸢尾花数据集分类

使用tf.keras搭建顺序神经网络 六步法——鸢尾花数据集分类 01 导入相关包 02 导入数据集,打乱顺序 03 建立Sequential模型 04 编译——确定优化器,损失函数,评测指标(用哪一种准确率) 05 训练模型——把各项参入填入…...

关于Java连接Hive,Spark等服务的Kerberos工具类封装

关于Java连接Hive,Spark等服务的Kerberos工具类封装 idea连接服务器的hive等相关服务的kerberos认证注意事项 idea 本地配置,连接服务器;进行kerberos认证,连接hive、HDFS、Spark等服务注意事项: 本地idea连接Hadoo…...

大数据框架之Hadoop:MapReduce(五)Yarn资源调度器

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。 简言之,Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源&…...

uniapp实现地图点聚合功能

前言 在工作中接到的一个任务,在app端实现如下功能: 地图点聚合地图页面支持tab切换(设备、劳务、人员)支持人员搜索显示分布 但是uniapp原有的map标签不支持点聚合功能(最新的版本支持了点聚合功能)&am…...

经典分类模型回顾2—GoogleNet实现图像分类(matlab版)

GoogleNet是深度学习领域的一种经典的卷积神经网络,其在ImageNet图像分类任务上的表现十分优秀。下面是使用Matlab实现GoogleNet的图像分类示例。 1. 数据准备 在开始之前,需要准备一些图像数据用来训练和测试模型,可以从ImageNet等数据集中…...

Java经典面试题——谈谈 final、finally、finalize 有什么不同?

典型回答 final 可以用来修饰类、方法、变量,分别有不同的意义,final 修饰的 class 代表不可以继承扩展, final 的变量是不可以修改的,而 final 的方法也是不可以重写的(override)。 finally 则是 Java 保…...

C#的Version类型值与SQL Server中二进制binary类型转换

使用C#语言编写的应用程序可以通过.NET Framework框架提供的Version类来控制每次发布的版本号,以便更好控制每次版本更新迭代。 版本号由两到四个组件组成:主要、次要、内部版本和修订。 版本号的格式如下所示, 可选组件显示在方括号 ([ 和…...

软测入门(五)接口测试Postman

Postman 一款Http接口收工测试工具。如果做自动化测试会使用jemter做。 安装 去官网下载即可。 https://www.postman.com/downloads/?utm_sourcepostman-home 功能介绍 页面上的单词基本上都能了解,不多介绍。 转代码&注释 可将接口的访问转为其他语言的…...

UWB通道选择、信号阻挡和反射对UWB定位范围和定位精度的影响

(一)介绍检查NLOS操作时需要考虑三个方面:(1)由于整体信号衰减,通信范围减小。(2)由于直接路径信号的衰减,导致直接路径检测范围的减小。(3)由于阻…...

linux基本功之列之wget命令实战

文章目录前言一. wget命令介绍二. 语法格式及常用选项三. 参考案例3.1 下载单个文件3.2 使用wget -o 下载文件并改名3.3 -c 参数,下载断开链接时,可以恢复下载3.4 wget后台下载3.5 使用wget下载整个网站四. 补充与汇总常见用法总结前言 大家好&#xff…...

学习ROS时针对gazebo相关的问题(重装与卸载是永远的神)

ResourceNotFound:gazebo_ros 错误解决 参考:https://blog.csdn.net/weixin_42591529/article/details/123869969 当将机器人加载到gazebo时,运行launch文件出现如下错误 这是由于缺少gazebo包所导致的。 解决办法:...

几个C语言容易忽略的问题

1 取模符号自增问题 我们不妨尝试写这样的程序 #include<stdio.h> int main(){int n,t5;printf("%d\n",7%(-3));//1printf("%d\n",(-7)%3);//-1while(--t)printf("%d\n",t);t5;while(t--)printf("%d\n",t);return 0; } 运行…...

CentOS 7.9安装Zabbix 4.4《保姆级教程》

CentOS 7.9安装Zabbix 4.4一、配置一览二、环境准备设置Selinux和firewalld设置软件源1.配置ustc CentOS-Base源2.安装zabbix 4.4官方源3.安装并更换epel源4.清除并生成缓存三、安装并配置Zabbix Server安装zabbix组件安装php安装mariadb并创建数据库修改zabbix_server.conf设置…...

路由器与交换机的区别(基础知识)

文章目录交换机路由器路由器和交换机的区别&#xff08;1&#xff09;工作层次不同&#xff08;2&#xff09;数据转发所依据的对象不同&#xff08;3&#xff09;传统的交换机只能分割冲突域&#xff0c;不能分割广播域&#xff1b;而路由器可以分割广播域&#xff08;4&#…...

Python基础学习9——函数

基本概念 函数是一种能够完成某项任务的封装工具。在数学中&#xff0c;函数是自变量到因变量的一种映射&#xff0c;通过某种方式能够使自变量的值变成因变量的值。其实本质上也是实现了某种值的转换的任务。 函数的定义 在python中&#xff0c;函数是利用def来进行定义&am…...

项目中的MD5、盐值加密

首先介绍一下MD5&#xff0c;而项目中用的是MD5和盐值来确保密码的安全性&#xff1b; 1. md5简介 md5的全称是md5信息摘要算法&#xff08;英文&#xff1a;MD5 Message-Digest Algorithm &#xff09;&#xff0c;一种被广泛使用的密码散列函数&#xff0c;可以产生一个128位…...

电商项目后端框架SpringBoot、MybatisPlus

后端框架基础 1.代码自动生成工具 mybatis-plus &#xff08;1&#xff09;首先需要添加依赖文件 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.2</version></dependency><de…...

2023年03月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年03月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

华为校招机试 - 数组取最小值(Java JS Python)

目录 题目描述 输入描述 输出描述 用例 题目解析 JavaScript算法源码 Java算法源码...

20 客户端服务订阅的事件机制剖析

Nacos客户端服务订阅的事件机制剖析 我们已经分析了Nacos客户端订阅的核心流程&#xff1a;Nacos客户端通过一个定时任务&#xff0c;每6秒从注册中心获取实例列表&#xff0c;当发现实例发生变化时&#xff0c;发布变更事件&#xff0c;订阅者进行业务处理&#xff0c;然后更…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...