当前位置: 首页 > news >正文

分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点,还应掌握数据分布的形态。
描述数据分布形态的度量有偏度系数和峰度系数,
其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。

峰度系数反映分布峰的尖峭程度的重要指标.
当峰度系数大于0时,两侧极端数据较多;
当峰度系数小于0时,两侧极端数据较少。

基本条件

*时间T固定,空间S固定

情况1:只改变中枢的T长短

np15a = np.concatenate((np.arange(0.5, 21, 1.5), np.full((12,), 20), np.arange(20, 40, 1.5)), axis=0)
np20a = np.concatenate((np.arange(0, 21, 2), np.full((18,), 20), np.arange(20, 41, 2)), axis=0)
np25a = np.concatenate((np.arange(0, 21, 2.5), np.full((22,), 20), np.arange(20, 41, 2.5)), axis=0)

情况1
峰度分别为①-0.34;②0.42;③1.22

结论:

中枢越长,峰度系数越大。

情况2:只改变中枢的位置

中枢位置变化
峰度分别为:
0 -1.16
1 -0.84
2 -0.61[绿色]
3 -0.77
4 -1.1

结论:

中枢越靠近均值(偏度接近0),峰值越大(-0.61);
②偏度的正负,对峰度没有影响。但偏度的绝对值越大,峰度值越小。

情况3:峰度值为0的abc浪

import numpy as np
from scipy.stats import kurtosis
def skew0(x1, x2, y=500, s=1):np00 = np.concatenate((np.arange(y-x2*s, y, s), np.full((x1,), y), np.arange(y+s, y+s+x2*s, s)), axis=0)npp = np.empty((0, len(np00)))npp = np.vstack((npp, np00))kt = kurtosis(npp[0])return kt, nppf12 = np.arange(100, 1000, 1)
for i in f12:for j in f12:kt, npp = skew0(i, j, 500, 1)if abs(kt) < 0.0001:print(i, j, i/j, j/i, kt)

结论

①a+c浪 / b浪的时间比值,约等于2.6712;
也就是说a浪和c浪匀速前提下,极限是2.67;
若a和c浪是水平,极限是8;

def skew0(x1, x2, y=500, s=10):np00 = np.concatenate((np.full((x2,), s), np.full((x1,), y), np.full((x2,), 2*y - s)), axis=0)npp = np.empty((0, len(np00)))npp = np.vstack((npp, np00))kt = kurtosis(npp[0])return kt, npp

相关文章:

分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点&#xff0c;还应掌握数据分布的形态。 描述数据分布形态的度量有偏度系数和峰度系数, 其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。 峰度系数反映分布峰的尖峭程度的重要指标. 当…...

HCIP 重发布

拓扑图&IP划分如下&#xff1a; 第一步&#xff0c;配置接口IP&环回地址 以R1为例&#xff0c;R2~R4同理 interface GigabitEthernet 0/0/0 ip address 12.1.1.1 24 interface GigabitEthernet 0/0/1 ip address 13.1.1.1 24 interface LoopBack 0 ip address 1.1.1.…...

FX图中的节点代表什么操作

在 FX 图中&#xff0c;每个节点代表一个操作。这些操作可以是函数调用、方法调用、模块实例调用&#xff0c;也可以是 torch.nn.Module 实例的调用。每个节点都对应一个调用站点&#xff0c;如运算符、方法和模块。 一.节点操作 下面是一些节点可能代表的操作&#xff1a; 1…...

【Java 设计模式】创建型之单例模式

文章目录 1. 定义2. 应用场景3. 代码实现1&#xff09;懒汉式2&#xff09;饿汉式 4. 应用示例结语 在软件开发中&#xff0c;单例模式是一种常见的设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点。单例模式在需要控制某些资源&#xff0c;如数…...

FlinkAPI开发之窗口(Window)

案例用到的测试数据请参考文章&#xff1a; Flink自定义Source模拟数据流 原文链接&#xff1a;https://blog.csdn.net/m0_52606060/article/details/135436048 窗口的概念 Flink是一种流式计算引擎&#xff0c;主要是来处理无界数据流的&#xff0c;数据源源不断、无穷无尽。…...

【Unity】Joystick Pack摇杆插件实现锁四向操作

Joystick Pack ​ 简介&#xff1a;一款Unity摇杆插件&#xff0c;非常轻量化 ​ 摇杆移动类型&#xff1a;圆形、横向、竖向 ​ 摇杆类型&#xff1a; Joystick描述Fixed固定位置Floating浮动操纵杆从用户触碰的地方开始&#xff0c;一直固定到触碰被释放。Dynamic动态操纵…...

29 旋转工具箱

效果演示 实现了一个菜单按钮的动画效果&#xff0c;当鼠标悬停在菜单按钮上时&#xff0c;菜单按钮会旋转315度&#xff0c;菜单按钮旋转的同时&#xff0c;菜单按钮旋转的8个小圆圈也会依次旋转360度&#xff0c;并且每个小圆圈的旋转方向和菜单按钮的旋转方向相反&#xff0…...

WeNet2.0:提高端到端ASR的生产力

摘要 最近&#xff0c;我们提供了 WeNet [1]&#xff0c;这是一个面向生产&#xff08;工业生产环境需求&#xff09;的端到端语音识别工具包&#xff0c;在单个模型中&#xff0c;它引入了统一的两次two-pass (U2) 框架和内置运行时&#xff08;built-in runtime&#xff09;…...

第九部分 使用函数 (四)

目录 一、foreach 函数 二、if 函数 三、call 函数 一、foreach 函数 foreach 函数和别的函数非常的不一样。因为这个函数是用来做循环用的&#xff0c;Makefile 中的 foreach 函数几乎是仿照于 Unix 标准 Shell&#xff08;/bin/sh&#xff09;中的 for 语句&#xff0c;或…...

一文读懂「Prompt Engineering」提示词工程

在了解提示过程之前&#xff0c;先了解一下什么是提示prompt&#xff0c;见最后附录部分 一、什么是Prompt Engingering&#xff1f; 提示工程&#xff08;Prompt Engingering&#xff09;&#xff0c;也被称为上下文提示&#xff08;In-Context Prompting&#xff09;&#x…...

微信小程序(一)简单的结构及样式演示

注释很详细&#xff0c;直接上代码 涉及内容&#xff1a; view和text标签的使用类的使用flex布局水平方向上均匀分布子元素垂直居中对齐子元素字体大小文字颜色底部边框的宽和颜色 源码&#xff1a; index.wxml <view class"navs"><text class"active…...

【设计模式】外观模式

前言 1. 单例模式&#xff08;Singleton Pattern&#xff09;&#xff1a;保证一个类只有一个实例&#xff0c;并提供一个全局的访问点。 2. 工厂模式&#xff08;Factory Pattern&#xff09;&#xff1a;定义一个创建对象的接口&#xff0c;但由子类决定要实例化的类是哪一…...

优先级队列(Priority Queue)

文章目录 优先级队列&#xff08;Priority Queue&#xff09;实现方式基于数组实现基于堆实现方法实现offer(E value)poll()peek()isEmpty()isFull() 优先级队列的实现细节 优先级队列&#xff08;Priority Queue&#xff09; 优先级队列是一种特殊的队列&#xff0c;其中的元素…...

12-桥接模式(Bridge)

意图 将抽象部分与它的实现部分分离&#xff0c;使他们可以独立地变化 个人理解 一句话概括就是只要是在抽象类中聚合了某个接口或者抽象类&#xff0c;就是使用了桥接模式。 抽象类A中聚合了抽象类B&#xff08;或者接口B&#xff09;&#xff0c;A的子类的方法中在相同的场…...

Zookeeper+Kafka概述

一 Zookeeper 1.1 Zookeeper定义 Zookeeper是一个开源的、分布式的&#xff0c;为分布式框架提供协调服务的Apache项目。 1.2 Zookeeper特点 Zookeeper&#xff1a;一个领导者&#xff08;leader&#xff09;&#xff0c;多个跟随者&#xff08;Follower&#xff09;组成的…...

架构师 - 架构师是做什么的 - 学习总结

架构师核心定义 架构师是什么 架构师是业务和技术之间的桥梁 架构师的核心职责是消除不确定性、和降低复杂性 架构设计环 架构师的三个核心能力 架构师的三个关键思维 架构师主要职责 架构设计 Vs 方案设计 架构设计前期 主要任务 澄清不确定性 明确利益干系人的诉求消除冲…...

全链路压测方案(一)—方案调研

一、概述 在业务系统中&#xff0c;保证系统稳定至关重要&#xff0c;直接影响线上业务稳定和性能。测试工作作为保证生产质量的最后一关&#xff0c;扮演者重要的角色。全链路压测是一种重要的测试工具和手段。可以解决系统中多环节多节点无法全流程打满流量的痛点问题&a…...

c++关键字const

C中的const是一种常量修饰符。在变量、函数参数和成员函数中使用const可以限制其对数据的修改。 const修饰的数据在定义时必须进行初始化&#xff0c;且不能被修改&#xff0c;因此使用const可以提高代码的安全性和可读性。在C中&#xff0c;const修饰的成员函数表示该函数保证…...

分布式计算平台 Hadoop 简介

Hadoop简介 Hadoop是一种分析和处理大数据的软件平台&#xff0c;是一个用Java语言实现的Apache的开源软件框架&#xff0c;在大量计算机组成的集群中实现了对海量数据的分布式计算。其主要采用MapReduce分布式计算框架&#xff0c;包括根据GFS原理开发的分布式文件系统HDFS、…...

系统学习Python——警告信息的控制模块warnings:常见函数-[warnings.warn]

分类目录&#xff1a;《系统学习Python》总目录 warnings.warn(message, categoryNone, stacklevel1, sourceNone, \*, skip_file_prefixesNone)常备用于引发警告、忽略或者触发异常。 如果给出category参数&#xff0c;则必须是警告类别类 &#xff1b;默认为UserWarning。 或…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...