Scipy 高级教程——统计学
Python Scipy 高级教程:统计学
Scipy 提供了强大的统计学工具,用于描述、分析和推断数据的分布和性质。本篇博客将深入介绍 Scipy 中的统计学功能,并通过实例演示如何应用这些工具。
1. 描述性统计
描述性统计是统计学中最基本的任务之一,用于总结和描述数据的基本特征。
import numpy as np
from scipy.stats import describe# 生成一组数据
data = np.random.normal(size=100)# 使用 describe 函数获取描述性统计信息
stats_info = describe(data)print("描述性统计信息:")
print(stats_info)
在这个例子中,我们生成了一组正态分布的随机数据,并使用 describe 函数获取数据的描述性统计信息,包括均值、标准差、最小值、最大值等。
2. 假设检验
假设检验用于判断数据集中的统计差异是否显著。Scipy 提供了多种假设检验的实现,如 t 检验、卡方检验等。
from scipy.stats import ttest_ind# 生成两组数据
group1 = np.random.normal(0, 1, size=50)
group2 = np.random.normal(1, 1, size=50)# 使用 t 检验判断两组数据的均值是否显著不同
t_statistic, p_value = ttest_ind(group1, group2)print("t 统计量:", t_statistic)
print("p 值:", p_value)
在这个例子中,我们生成了两组数据,并使用 ttest_ind 函数进行 t 检验,判断两组数据的均值是否显著不同。
3. 方差分析
方差分析用于比较多组数据之间的均值是否存在显著差异。Scipy 提供了 f_oneway 函数进行一元方差分析。
from scipy.stats import f_oneway# 生成三组数据
group1 = np.random.normal(0, 1, size=50)
group2 = np.random.normal(1, 1, size=50)
group3 = np.random.normal(2, 1, size=50)# 使用一元方差分析判断三组数据的均值是否存在显著差异
f_statistic, p_value = f_oneway(group1, group2, group3)print("F 统计量:", f_statistic)
print("p 值:", p_value)
在这个例子中,我们生成了三组数据,并使用 f_oneway 函数进行一元方差分析,判断三组数据的均值是否存在显著差异。
4. 线性回归
线性回归用于建立变量之间的线性关系。Scipy 提供了 linregress 函数进行线性回归分析。
from scipy.stats import linregress
import matplotlib.pyplot as plt# 生成一组随机数据
x = np.random.rand(100)
y = 2 * x + 1 + np.random.normal(scale=0.2, size=100)# 使用 linregress 函数进行线性回归分析
slope, intercept, r_value, p_value, std_err = linregress(x, y)# 绘制原始数据和回归直线
plt.scatter(x, y, label='原始数据')
plt.plot(x, slope * x + intercept, color='red', label='回归直线')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()print("斜率:", slope)
print("截距:", intercept)
print("相关系数:", r_value)
print("p 值:", p_value)
在这个例子中,我们生成了一组带有噪声的随机数据,并使用 linregress 函数进行线性回归分析,最后绘制了原始数据和回归直线。
5. 总结
通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的统计学工具。这些工具在描述性统计、假设检验、方差分析、线性回归等方面具有广泛的应用。在实际应用中,根据具体问题选择合适的统计方法将有助于提高数据分析的准确性和可靠性。希望这篇博客对你有所帮助!
相关文章:
Scipy 高级教程——统计学
Python Scipy 高级教程:统计学 Scipy 提供了强大的统计学工具,用于描述、分析和推断数据的分布和性质。本篇博客将深入介绍 Scipy 中的统计学功能,并通过实例演示如何应用这些工具。 1. 描述性统计 描述性统计是统计学中最基本的任务之一&…...

《向量数据库指南》RAG 应用中的指代消解——解决方案初探
随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。 其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过…...

CSS 一行三列布局,可换行(含grid网格布局、flex弹性布局/inline-block布局 + 伪类选择器)
效果 一、HTML <div class"num-wrap"><div class"num-item" v-for"num in 8" :key"num">{{ num }}</div></div> 二、CSS 1、grid网格布局(推荐) .num-wrap {// grid网格布局display…...

class_3:lambda表达式
1、lambda表达式是c11引入的一种匿名函数的方式,它允许你在需要函数的地方内联的定义函数,而无需单独命名函数; #include <iostream>using namespace std;bool compare(int a,int b) {return a > b; }int getMax(int a,int b,bool (…...
Hadoop 实战 | 词频统计WordCount
词频统计 通过分析大量文本数据中的词频,可以识别常见词汇和短语,从而抽取文本的关键信息和概要,有助于识别文本中频繁出现的关键词,这对于理解文本内容和主题非常关键。同时,通过分析词在文本中的相对频率࿰…...

SpringCloud.04.熔断器Hystrix( Spring Cloud Alibaba 熔断(Sentinel))
目录 熔断器概述 使用Sentinel工具 什么是Sentinel 微服务集成Sentinel 配置provider文件,在里面加入有关控制台的配置 实现一个接口的限流 基本概念 重要功能 Sentinel规则 流控规则 简单配置 配置流控模式 配置流控效果 降级规则 SentinelResource…...
python 八大排序_python-打基础-八大排序
## 排序篇 #### 二路归并排序 - 介绍 - 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列…...

运维知识点-Sqlite
Sqlite 引入 依赖 引入 依赖 <dependency><groupId>org.xerial</groupId><artifactId>sqlite-jdbc</artifactId><version>3.36.0.3</version></dependency>import javafx.scene.control.Alert; import java.sql.*;public clas…...

我为什么要写RocketMQ消息中间件实战派上下册这本书?
我与RocketMQ结识于2018年,那个时候RocketMQ还不是Apache的顶级项目,并且我还在自己的公司做过RocketMQ的技术分享,并且它的布道和推广,还是在之前的首席架构师的带领下去做的,并且之前有一个技术神经质的人࿰…...
24校招,Moka测试开发工程师一面
前言 大家好,今天回顾一下楼主当时参加moka测试开发工程师的面试 对其中一些重要问题,我也给出了相应的答案 过程 自我介绍挑一个项目,详细介绍你在其中担任的职责如何安排工作的,有什么成果?回归测试如何设计&…...
Docker(网络,网络通信,资源控制,数据管理,CPU优化,端口映射,容器互联)
目录 docker网络 网络实现原理 网络实现实例 网络模式 查看Docker中的网络列表: 指定容器网络模式 模式详解 Host模式(主机模式): Container模式(容器模式): None模式(无网…...

开发实践5_project
要求: (对作业要求的"Student"稍作了变换,表单名称为“Index”。)获得后台 Index 数据,作展示,要求使用分页器,包含上一页、下一页、当前页/总页。 结果: ① preparatio…...

蓝桥杯准备
书籍获取:Z-Library – 世界上最大的电子图书馆。自由访问知识和文化。 (zlibrary-east.se) 书评:(豆瓣) (douban.com) 一、观千曲而后晓声 别人常说蓝桥杯拿奖很简单,但是拿奖是一回事,拿什么奖又是一回事。况且,如果…...
AtCoder Beginner Contest 336 A-E 题解
比赛链接:https://atcoder.jp/contests/abc336比赛时间:2024 年 1 月 14 日 20:00-21:40 A题:Long Loong 标签:模拟题意:给定一个 n n n,输出 L L L、 n n n个 o o o和 n g ng ng。题解:按题意…...

node各个版本的下载地址
下载地址: https://nodejs.org/dist/ 可以下载多个版本,使用nvm控制切换(需要先安装nvm再安装node) nvm下载地址(访问的是github,请科学上网,下载后解压安装exe即可):h…...

JVM实战(17)——模拟对象晋升
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…...

帆软笔记-决策表报对象使用(两表格联动)
效果描述如下: 数据库中有个聚合商表,和一个储能表,储能属于聚合商,桩表中有个字段是所属聚合商。 要求帆软有2个表格,点击某个聚合商,展示指定的储能数据。 操作: 帆软选中表格单元…...
DataGear专业版 1.0.0 发布,数据可视化分析平台
DataGear专业版 1.0.0 正式发布,欢迎大家试用! http://datagear.tech/pro/ DataGear专业版 基于 开源版 开发,新增了诸多企业级特性,包括: MySQL、PostgreSQL、Oracle、SQL Server以及更多兼容部署数据库支持OAuth2…...
AS,android SDK
android sdk中包含什么? Android平台工具(Android Platform Tools): 这包括 adb(Android Debug Bridge)等工具,用于在计算机和 Android 设备之间进行通信、调试和数据传输。 Android命令行工具…...
LeetCode第155题 - 最小栈
题目 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 push(x) —— 将元素 x 推入栈中。 pop() —— 删除栈顶的元素。 top() —— 获取栈顶元素。 getMin() —— 检索栈中的最小元素。 示例: 输入: [&q…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...