当前位置: 首页 > news >正文

《向量数据库指南》RAG 应用中的指代消解——解决方案初探

随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。

其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过程中引入检索组件,从已知的知识库中检索相关信息,并将这些信息与 LLM 的生成能力结合,从而提高生成的准确性和可靠性。这种方法可以用于实现各种知识密集型 NLP 任务,如问答、文摘生成、语义推理等。

本文将从解决优化 RAG 系统里的一个具体问题出发,通过展示使用 LLM Prompt Engineering 的方法,来解析传统 NLP 的问题。

01.

解决方案初探

开源项目 Akcio(https://github.com/zc277584121/akcio) 就是一套完整的 RAG 问答系统,用户导入各类私有专业知识,就可以构建专业领域的问答系统。

|Akcio 的架构图。专业知识是各类 Documents,通过 DataLoader 导入进 Store。在每次提问 Question 后,LLM 可以结合召回知识,加上 LLM 自身的自然语言生成能力,给出对应的回答。

举个例子,比如我们将一篇名为《2023 大模型落地进展趋势洞察报告》的文章,将它导入 Akcio,就可以问它这篇报告里的问题了,比如:

2023年,大模型行业的应用场景可以分为哪几类?

通过一些召回策略,在 Store 里召回出了《报告》中,与问题最相关的 3 条原文片段:

['在2023年,大模型行业的应用场景可分为生成和决策两类应用场景,决策场景预期业务值更高。',
'大模型行业的生成场景主要有对话交互,代码开发,智能体等。',
'NLP的应用场景有文本分类,机器翻译,情感分析,自动摘要等。']

很显然,最有用的片段是第一条,但没关系,Akcio 会把这 3 条都作为 context,去问 LLM,比如它是这样问的:

请根据下面知识回答问题:知识:在2023年,大模型行业的应用场景可分为生成和决策两类应用场景,决策场景预期业务值更高。
大模型行业的生成场景主要有对话交互,代码开发,智能体等。
NLP的应用场景有文本分类,机器翻译,情感分析,自动摘要等。问题:2023年,大模型行业的应用场景可以分为哪几类?

LLM 就可以给出合理的回答:

大模型行业的应用场景可以分为生成和决策两类应用场景。

这样的话整条链路就走通了。这套架构逻辑看似并不复杂,但如果深入到开发过程中,就会发现其中有一些难点需要解决。

比如在多轮对话的情况下,就需要解决一个问题:如果在最新一轮的提问,里面有些指代上文的代词,那么如果直接用这个问题去做召回,很可能会召回错误的知识,比如:

问1: 2023年,大模型行业的应用场景可以分为哪几类?
答1: 大模型行业的应用场景可以分为生成和决策两类应用场景。
问2: 它们有什么区别,能举例说明吗?

这里的“它们”很显然指的是“生成和决策两类应用场景”,问题的原意是“生成和决策场景有什么区别,能举例说明吗?”。但如果直接用这个问题“它们有什么区别,能举例说明吗?”去做召回,那很有可能召回的是比如这样的知识片段:

['BERT和GPT都是NLP领域的重要模型,但它们的设计和应用场景有很大的区别。',
'大模型和小模型的区别在于其规模和复杂度。大模型通常具有更多的参数和更复杂的结构,需要更多的计算资源和时间来训练和推理。而小模型则相对简单,参数较少,训练和推理速度较快。',
'但没有更多的信息来区分这两个产品,因为它们看起来非常相似。']

显然主体错了,那用这些召回的知识肯定也就不对了,LLM 利用这些无用的知识也不用给用户很好的回答了。

那么要解决这个问题有什么好的办法呢?

首先可以想到的是NLP领域中的一个常见任务:指代消解(Coreference resolution)。指代消解是自然语言处理(NLP)中的一项重要任务,用于确定文本中指代相同实体的词语。该任务旨在识别代词、名词短语等,将它们与先前提到的实体关联起来。例如,在句子“John saw Mary. He waved to her.”中,coreference resolution会将“He”和“John”以及“her”和“Mary”归纳为同一实体。

也许这个任务可以帮助我们解决这个问题,但经过实践发现,无论是通过 spacy,还是 huggingface,目前的开源模型,处理指代消解这个任务都有一定的局限性,只能处理比较简单的场景,比如:

问1:大模型是什么?
问2:它有什么用?

可以找出“它”指的是“大模型”。然而,对于复杂的指代,却不能识别出来,比如:

问1:GPT3是什么?
问2:GPT4又是什么时候发布的?
问3:二者有什么区别?后者有什么优势?

没法识别出“二者”指的是 GPT3 和 GPT4,“后者”指的是“GPT4”。再比如:

问1:GPT4又是什么时候发布的?
答1:GPT4是在 2023 年发布的
问2:这一年在计算机视觉有什么进展?

没法识别出“这一年”指的是“2023年”。

也就是说,现有的 NLP 小模型,只能处理识别“它”,“他”,“她”,“这个”等简单的代词,而对于复杂的指代表述,没法识别处理。

那该怎么办呢?对于复杂语言场景,也许最好的处理就是用大模型,毕竟 ChatGPT 火爆时可是号称是“让 NLP 不存在的”的终极武器。于是,我们可以尝试,让 LLM 来做这个指代消解任务。

相关文章:

《向量数据库指南》RAG 应用中的指代消解——解决方案初探

随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。 其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过…...

CSS 一行三列布局,可换行(含grid网格布局、flex弹性布局/inline-block布局 + 伪类选择器)

效果 一、HTML <div class"num-wrap"><div class"num-item" v-for"num in 8" :key"num">{{ num }}</div></div> 二、CSS 1、grid网格布局&#xff08;推荐&#xff09; .num-wrap {// grid网格布局display…...

class_3:lambda表达式

1、lambda表达式是c11引入的一种匿名函数的方式&#xff0c;它允许你在需要函数的地方内联的定义函数&#xff0c;而无需单独命名函数&#xff1b; #include <iostream>using namespace std;bool compare(int a,int b) {return a > b; }int getMax(int a,int b,bool (…...

Hadoop 实战 | 词频统计WordCount

词频统计 通过分析大量文本数据中的词频&#xff0c;可以识别常见词汇和短语&#xff0c;从而抽取文本的关键信息和概要&#xff0c;有助于识别文本中频繁出现的关键词&#xff0c;这对于理解文本内容和主题非常关键。同时&#xff0c;通过分析词在文本中的相对频率&#xff0…...

SpringCloud.04.熔断器Hystrix( Spring Cloud Alibaba 熔断(Sentinel))

目录 熔断器概述 使用Sentinel工具 什么是Sentinel 微服务集成Sentinel 配置provider文件&#xff0c;在里面加入有关控制台的配置 实现一个接口的限流 基本概念 重要功能 Sentinel规则 流控规则 简单配置 配置流控模式 配置流控效果 降级规则 SentinelResource…...

python 八大排序_python-打基础-八大排序

## 排序篇 #### 二路归并排序 - 介绍 - 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列…...

运维知识点-Sqlite

Sqlite 引入 依赖 引入 依赖 <dependency><groupId>org.xerial</groupId><artifactId>sqlite-jdbc</artifactId><version>3.36.0.3</version></dependency>import javafx.scene.control.Alert; import java.sql.*;public clas…...

我为什么要写RocketMQ消息中间件实战派上下册这本书?

我与RocketMQ结识于2018年&#xff0c;那个时候RocketMQ还不是Apache的顶级项目&#xff0c;并且我还在自己的公司做过RocketMQ的技术分享&#xff0c;并且它的布道和推广&#xff0c;还是在之前的首席架构师的带领下去做的&#xff0c;并且之前有一个技术神经质的人&#xff0…...

24校招,Moka测试开发工程师一面

前言 大家好&#xff0c;今天回顾一下楼主当时参加moka测试开发工程师的面试 对其中一些重要问题&#xff0c;我也给出了相应的答案 过程 自我介绍挑一个项目&#xff0c;详细介绍你在其中担任的职责如何安排工作的&#xff0c;有什么成果&#xff1f;回归测试如何设计&…...

Docker(网络,网络通信,资源控制,数据管理,CPU优化,端口映射,容器互联)

目录 docker网络 网络实现原理 网络实现实例 网络模式 查看Docker中的网络列表&#xff1a; 指定容器网络模式 模式详解 Host模式&#xff08;主机模式&#xff09;&#xff1a; Container模式&#xff08;容器模式&#xff09;&#xff1a; None模式&#xff08;无网…...

开发实践5_project

要求&#xff1a; &#xff08;对作业要求的"Student"稍作了变换&#xff0c;表单名称为“Index”。&#xff09;获得后台 Index 数据&#xff0c;作展示&#xff0c;要求使用分页器&#xff0c;包含上一页、下一页、当前页/总页。 结果&#xff1a; ① preparatio…...

蓝桥杯准备

书籍获取&#xff1a;Z-Library – 世界上最大的电子图书馆。自由访问知识和文化。 (zlibrary-east.se) 书评&#xff1a;(豆瓣) (douban.com) 一、观千曲而后晓声 别人常说蓝桥杯拿奖很简单&#xff0c;但是拿奖是一回事&#xff0c;拿什么奖又是一回事。况且&#xff0c;如果…...

AtCoder Beginner Contest 336 A-E 题解

比赛链接&#xff1a;https://atcoder.jp/contests/abc336比赛时间&#xff1a;2024 年 1 月 14 日 20:00-21:40 A题&#xff1a;Long Loong 标签&#xff1a;模拟题意&#xff1a;给定一个 n n n&#xff0c;输出 L L L、 n n n个 o o o和 n g ng ng。题解&#xff1a;按题意…...

node各个版本的下载地址

下载地址&#xff1a; https://nodejs.org/dist/ 可以下载多个版本&#xff0c;使用nvm控制切换&#xff08;需要先安装nvm再安装node&#xff09; nvm下载地址&#xff08;访问的是github&#xff0c;请科学上网&#xff0c;下载后解压安装exe即可&#xff09;&#xff1a;h…...

JVM实战(17)——模拟对象晋升

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…...

帆软笔记-决策表报对象使用(两表格联动)

效果描述如下&#xff1a; 数据库中有个聚合商表&#xff0c;和一个储能表&#xff0c;储能属于聚合商&#xff0c;桩表中有个字段是所属聚合商。 要求帆软有2个表格&#xff0c;点击某个聚合商&#xff0c;展示指定的储能数据。 操作&#xff1a; 帆软选中表格单元&#xf…...

DataGear专业版 1.0.0 发布,数据可视化分析平台

DataGear专业版 1.0.0 正式发布&#xff0c;欢迎大家试用&#xff01; http://datagear.tech/pro/ DataGear专业版 基于 开源版 开发&#xff0c;新增了诸多企业级特性&#xff0c;包括&#xff1a; MySQL、PostgreSQL、Oracle、SQL Server以及更多兼容部署数据库支持OAuth2…...

AS,android SDK

android sdk中包含什么&#xff1f; Android平台工具&#xff08;Android Platform Tools&#xff09;&#xff1a; 这包括 adb&#xff08;Android Debug Bridge&#xff09;等工具&#xff0c;用于在计算机和 Android 设备之间进行通信、调试和数据传输。 Android命令行工具…...

LeetCode第155题 - 最小栈

题目 设计一个支持 push &#xff0c;pop &#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 push(x) —— 将元素 x 推入栈中。 pop() —— 删除栈顶的元素。 top() —— 获取栈顶元素。 getMin() —— 检索栈中的最小元素。 示例: 输入&#xff1a; [&q…...

Java微服务系列之 ShardingSphere - ShardingSphere-JDBC

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列专栏目录 [Java项…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...