当前位置: 首页 > news >正文

《向量数据库指南》RAG 应用中的指代消解——解决方案初探

随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。

其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过程中引入检索组件,从已知的知识库中检索相关信息,并将这些信息与 LLM 的生成能力结合,从而提高生成的准确性和可靠性。这种方法可以用于实现各种知识密集型 NLP 任务,如问答、文摘生成、语义推理等。

本文将从解决优化 RAG 系统里的一个具体问题出发,通过展示使用 LLM Prompt Engineering 的方法,来解析传统 NLP 的问题。

01.

解决方案初探

开源项目 Akcio(https://github.com/zc277584121/akcio) 就是一套完整的 RAG 问答系统,用户导入各类私有专业知识,就可以构建专业领域的问答系统。

|Akcio 的架构图。专业知识是各类 Documents,通过 DataLoader 导入进 Store。在每次提问 Question 后,LLM 可以结合召回知识,加上 LLM 自身的自然语言生成能力,给出对应的回答。

举个例子,比如我们将一篇名为《2023 大模型落地进展趋势洞察报告》的文章,将它导入 Akcio,就可以问它这篇报告里的问题了,比如:

2023年,大模型行业的应用场景可以分为哪几类?

通过一些召回策略,在 Store 里召回出了《报告》中,与问题最相关的 3 条原文片段:

['在2023年,大模型行业的应用场景可分为生成和决策两类应用场景,决策场景预期业务值更高。',
'大模型行业的生成场景主要有对话交互,代码开发,智能体等。',
'NLP的应用场景有文本分类,机器翻译,情感分析,自动摘要等。']

很显然,最有用的片段是第一条,但没关系,Akcio 会把这 3 条都作为 context,去问 LLM,比如它是这样问的:

请根据下面知识回答问题:知识:在2023年,大模型行业的应用场景可分为生成和决策两类应用场景,决策场景预期业务值更高。
大模型行业的生成场景主要有对话交互,代码开发,智能体等。
NLP的应用场景有文本分类,机器翻译,情感分析,自动摘要等。问题:2023年,大模型行业的应用场景可以分为哪几类?

LLM 就可以给出合理的回答:

大模型行业的应用场景可以分为生成和决策两类应用场景。

这样的话整条链路就走通了。这套架构逻辑看似并不复杂,但如果深入到开发过程中,就会发现其中有一些难点需要解决。

比如在多轮对话的情况下,就需要解决一个问题:如果在最新一轮的提问,里面有些指代上文的代词,那么如果直接用这个问题去做召回,很可能会召回错误的知识,比如:

问1: 2023年,大模型行业的应用场景可以分为哪几类?
答1: 大模型行业的应用场景可以分为生成和决策两类应用场景。
问2: 它们有什么区别,能举例说明吗?

这里的“它们”很显然指的是“生成和决策两类应用场景”,问题的原意是“生成和决策场景有什么区别,能举例说明吗?”。但如果直接用这个问题“它们有什么区别,能举例说明吗?”去做召回,那很有可能召回的是比如这样的知识片段:

['BERT和GPT都是NLP领域的重要模型,但它们的设计和应用场景有很大的区别。',
'大模型和小模型的区别在于其规模和复杂度。大模型通常具有更多的参数和更复杂的结构,需要更多的计算资源和时间来训练和推理。而小模型则相对简单,参数较少,训练和推理速度较快。',
'但没有更多的信息来区分这两个产品,因为它们看起来非常相似。']

显然主体错了,那用这些召回的知识肯定也就不对了,LLM 利用这些无用的知识也不用给用户很好的回答了。

那么要解决这个问题有什么好的办法呢?

首先可以想到的是NLP领域中的一个常见任务:指代消解(Coreference resolution)。指代消解是自然语言处理(NLP)中的一项重要任务,用于确定文本中指代相同实体的词语。该任务旨在识别代词、名词短语等,将它们与先前提到的实体关联起来。例如,在句子“John saw Mary. He waved to her.”中,coreference resolution会将“He”和“John”以及“her”和“Mary”归纳为同一实体。

也许这个任务可以帮助我们解决这个问题,但经过实践发现,无论是通过 spacy,还是 huggingface,目前的开源模型,处理指代消解这个任务都有一定的局限性,只能处理比较简单的场景,比如:

问1:大模型是什么?
问2:它有什么用?

可以找出“它”指的是“大模型”。然而,对于复杂的指代,却不能识别出来,比如:

问1:GPT3是什么?
问2:GPT4又是什么时候发布的?
问3:二者有什么区别?后者有什么优势?

没法识别出“二者”指的是 GPT3 和 GPT4,“后者”指的是“GPT4”。再比如:

问1:GPT4又是什么时候发布的?
答1:GPT4是在 2023 年发布的
问2:这一年在计算机视觉有什么进展?

没法识别出“这一年”指的是“2023年”。

也就是说,现有的 NLP 小模型,只能处理识别“它”,“他”,“她”,“这个”等简单的代词,而对于复杂的指代表述,没法识别处理。

那该怎么办呢?对于复杂语言场景,也许最好的处理就是用大模型,毕竟 ChatGPT 火爆时可是号称是“让 NLP 不存在的”的终极武器。于是,我们可以尝试,让 LLM 来做这个指代消解任务。

相关文章:

《向量数据库指南》RAG 应用中的指代消解——解决方案初探

随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。 其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过…...

CSS 一行三列布局,可换行(含grid网格布局、flex弹性布局/inline-block布局 + 伪类选择器)

效果 一、HTML <div class"num-wrap"><div class"num-item" v-for"num in 8" :key"num">{{ num }}</div></div> 二、CSS 1、grid网格布局&#xff08;推荐&#xff09; .num-wrap {// grid网格布局display…...

class_3:lambda表达式

1、lambda表达式是c11引入的一种匿名函数的方式&#xff0c;它允许你在需要函数的地方内联的定义函数&#xff0c;而无需单独命名函数&#xff1b; #include <iostream>using namespace std;bool compare(int a,int b) {return a > b; }int getMax(int a,int b,bool (…...

Hadoop 实战 | 词频统计WordCount

词频统计 通过分析大量文本数据中的词频&#xff0c;可以识别常见词汇和短语&#xff0c;从而抽取文本的关键信息和概要&#xff0c;有助于识别文本中频繁出现的关键词&#xff0c;这对于理解文本内容和主题非常关键。同时&#xff0c;通过分析词在文本中的相对频率&#xff0…...

SpringCloud.04.熔断器Hystrix( Spring Cloud Alibaba 熔断(Sentinel))

目录 熔断器概述 使用Sentinel工具 什么是Sentinel 微服务集成Sentinel 配置provider文件&#xff0c;在里面加入有关控制台的配置 实现一个接口的限流 基本概念 重要功能 Sentinel规则 流控规则 简单配置 配置流控模式 配置流控效果 降级规则 SentinelResource…...

python 八大排序_python-打基础-八大排序

## 排序篇 #### 二路归并排序 - 介绍 - 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列…...

运维知识点-Sqlite

Sqlite 引入 依赖 引入 依赖 <dependency><groupId>org.xerial</groupId><artifactId>sqlite-jdbc</artifactId><version>3.36.0.3</version></dependency>import javafx.scene.control.Alert; import java.sql.*;public clas…...

我为什么要写RocketMQ消息中间件实战派上下册这本书?

我与RocketMQ结识于2018年&#xff0c;那个时候RocketMQ还不是Apache的顶级项目&#xff0c;并且我还在自己的公司做过RocketMQ的技术分享&#xff0c;并且它的布道和推广&#xff0c;还是在之前的首席架构师的带领下去做的&#xff0c;并且之前有一个技术神经质的人&#xff0…...

24校招,Moka测试开发工程师一面

前言 大家好&#xff0c;今天回顾一下楼主当时参加moka测试开发工程师的面试 对其中一些重要问题&#xff0c;我也给出了相应的答案 过程 自我介绍挑一个项目&#xff0c;详细介绍你在其中担任的职责如何安排工作的&#xff0c;有什么成果&#xff1f;回归测试如何设计&…...

Docker(网络,网络通信,资源控制,数据管理,CPU优化,端口映射,容器互联)

目录 docker网络 网络实现原理 网络实现实例 网络模式 查看Docker中的网络列表&#xff1a; 指定容器网络模式 模式详解 Host模式&#xff08;主机模式&#xff09;&#xff1a; Container模式&#xff08;容器模式&#xff09;&#xff1a; None模式&#xff08;无网…...

开发实践5_project

要求&#xff1a; &#xff08;对作业要求的"Student"稍作了变换&#xff0c;表单名称为“Index”。&#xff09;获得后台 Index 数据&#xff0c;作展示&#xff0c;要求使用分页器&#xff0c;包含上一页、下一页、当前页/总页。 结果&#xff1a; ① preparatio…...

蓝桥杯准备

书籍获取&#xff1a;Z-Library – 世界上最大的电子图书馆。自由访问知识和文化。 (zlibrary-east.se) 书评&#xff1a;(豆瓣) (douban.com) 一、观千曲而后晓声 别人常说蓝桥杯拿奖很简单&#xff0c;但是拿奖是一回事&#xff0c;拿什么奖又是一回事。况且&#xff0c;如果…...

AtCoder Beginner Contest 336 A-E 题解

比赛链接&#xff1a;https://atcoder.jp/contests/abc336比赛时间&#xff1a;2024 年 1 月 14 日 20:00-21:40 A题&#xff1a;Long Loong 标签&#xff1a;模拟题意&#xff1a;给定一个 n n n&#xff0c;输出 L L L、 n n n个 o o o和 n g ng ng。题解&#xff1a;按题意…...

node各个版本的下载地址

下载地址&#xff1a; https://nodejs.org/dist/ 可以下载多个版本&#xff0c;使用nvm控制切换&#xff08;需要先安装nvm再安装node&#xff09; nvm下载地址&#xff08;访问的是github&#xff0c;请科学上网&#xff0c;下载后解压安装exe即可&#xff09;&#xff1a;h…...

JVM实战(17)——模拟对象晋升

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…...

帆软笔记-决策表报对象使用(两表格联动)

效果描述如下&#xff1a; 数据库中有个聚合商表&#xff0c;和一个储能表&#xff0c;储能属于聚合商&#xff0c;桩表中有个字段是所属聚合商。 要求帆软有2个表格&#xff0c;点击某个聚合商&#xff0c;展示指定的储能数据。 操作&#xff1a; 帆软选中表格单元&#xf…...

DataGear专业版 1.0.0 发布,数据可视化分析平台

DataGear专业版 1.0.0 正式发布&#xff0c;欢迎大家试用&#xff01; http://datagear.tech/pro/ DataGear专业版 基于 开源版 开发&#xff0c;新增了诸多企业级特性&#xff0c;包括&#xff1a; MySQL、PostgreSQL、Oracle、SQL Server以及更多兼容部署数据库支持OAuth2…...

AS,android SDK

android sdk中包含什么&#xff1f; Android平台工具&#xff08;Android Platform Tools&#xff09;&#xff1a; 这包括 adb&#xff08;Android Debug Bridge&#xff09;等工具&#xff0c;用于在计算机和 Android 设备之间进行通信、调试和数据传输。 Android命令行工具…...

LeetCode第155题 - 最小栈

题目 设计一个支持 push &#xff0c;pop &#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 push(x) —— 将元素 x 推入栈中。 pop() —— 删除栈顶的元素。 top() —— 获取栈顶元素。 getMin() —— 检索栈中的最小元素。 示例: 输入&#xff1a; [&q…...

Java微服务系列之 ShardingSphere - ShardingSphere-JDBC

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列专栏目录 [Java项…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...