当前位置: 首页 > news >正文

毕业设计:基于python微博舆情分析系统+可视化+Django框架 K-means聚类算法(源码)✅

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言+Django框架+数据库+jieba分词+ scikit_learn机器学习(K-means聚类算法)+情感分析 snownlp

2、项目界面

(1)微博舆情分析

在这里插入图片描述

(2)情感分析可视化

在这里插入图片描述

(3)微博数据浏览

在这里插入图片描述

(4)评论前十

在这里插入图片描述

(5)K-Means聚类分析

(6)注册登录界面

在这里插入图片描述

3、项目说明

1、所用技术
Python语言+Django框架+数据库+jieba分词+
scikit_learn机器学习(K-means聚类算法)+情感分析 snownlp

微博舆情分析系统是基于Python语言和Django框架开发的,使用了数据库存储数据,并利用jieba分词进行中文文本的分词处理。系统还集成了scikit_learn机器学习库中的K-means聚类算法,以及snownlp库进行情感分析。

该系统的主要功能是对微博中的舆情进行分析和评估。用户可以通过系统上传微博数据,并进行分词处理和情感分析。系统会自动将微博数据进行分词,并根据分词结果进行情感分析,判断微博的情感倾向(积极、消极或中性)。同时,系统还会利用K-means聚类算法对微博进行聚类,将相似主题的微博归为一类。

在系统的界面上,用户可以查看微博的分词结果、情感分析结果以及聚类结果。用户还可以通过系统提供的搜索功能查找特定的微博,以及按照情感倾向或聚类类别进行筛选和排序。

微博舆情分析系统的应用范围广泛,可以帮助企业、政府等机构了解公众对特定事件、产品或政策的态度,从而进行舆情监测和管理。同时,该系统也可以用于学术研究领域,帮助研究人员对社会舆情进行分析和研究。

4、核心代码

###首页
@check_login
def index(request):# 话题列表topic_raw = [item.topic for item in WeiBo.objects.all() if item.topic]topic_list = []for item in topic_raw:topic_list.extend(item.split(','))topic_list = list(set(topic_list))# yon用户信息uid = int(request.COOKIES.get('uid', -1))if uid != -1:username = User.objects.filter(id=uid)[0].name# 得到话题if 'key' not in request.GET:key = topic_list[0]raw_data = WeiBo.objects.all()else:key= request.GET.get('key')raw_data = WeiBo.objects.filter(topic__contains=key)# 分页if 'page' not in request.GET:page = 1else:page = int(request.GET.get('page'))data_list = raw_data[(page-1)*20 : page*20     ]return render(request, 'index.html', locals())
# 情感分类
def fenlei(request):from snownlp import SnowNLP# j = '我喜欢你'# s = SnowNLP(j)# print(s.sentiments)for item in tqdm(WeiBo.objects.all()):emotion = '正向' if SnowNLP(item.content).sentiments >0.45 else '负向'WeiBo.objects.filter(id=item.id).update(emotion=emotion)return JsonResponse({'status':1,'msg':'操作成功'} )# 登录
def login(request):if request.method == "POST":tel, pwd = request.POST.get('tel'), request.POST.get('pwd')if User.objects.filter(tel=tel, password=pwd):obj = redirect('/')obj.set_cookie('uid', User.objects.filter(tel=tel, password=pwd)[0].id, max_age=60 * 60 * 24)return objelse:msg = "用户信息错误,请重新输入!!"return render(request, 'login.html', locals())else:return render(request, 'login.html', locals())# 注册
def register(request):if request.method == "POST":name, tel, pwd = request.POST.get('name'), request.POST.get('tel'), request.POST.get('pwd')print(name, tel, pwd)if User.objects.filter(tel=tel):msg = "你已经有账号了,请登录"else:User.objects.create(name=name, tel=tel, password=pwd)msg = "注册成功,请登录!"return render(request, 'login.html', locals())else:msg = ""return render(request, 'register.html', locals())# 注销
def logout(request):obj = redirect('index')obj.delete_cookie('uid')return obj# 微博可视化
@check_login
def plot(request):"""折线图   每月发表数柱状图   每日发表微博前20饼图  正负向柱状图  评论前十"""uid = int(request.COOKIES.get('uid', -1))if uid != -1:username = User.objects.filter(id=uid)[0].name#1 折线图   每天发布微博折线图raw_data = WeiBo.objects.all()main1 = [item.time.strftime('%Y-%m-%d') for item in raw_data]main1_x = sorted(list(set(main1)))main1_y = [main1.count(item) for item in main1_x]

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

相关文章:

毕业设计:基于python微博舆情分析系统+可视化+Django框架 K-means聚类算法(源码)✅

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏) 毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总 🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题&#xff…...

xbox如何提升下载速度?

提高Xbox的下载速度可以通过以下几种方法: 连接稳定的网络:使用有线以太网连接而不是无线连接,因为有线连接通常更稳定且速度更快。 关闭正在运行的游戏和应用程序:运行游戏或应用程序会消耗网络资源和处理能力,关闭它…...

day13 滑动窗口最大值 前K个高频元素

题目1:239 滑动窗口最大值 题目链接:239 滑动窗口最大值 题意 长度为K的滑动窗口从整数数组的最左侧移动到最右侧,每次只移动1位,求滑动窗口中的最大值 不能使用优先级队列,如果使用大顶堆,最终要pop的…...

Unity——VContainer的依赖注入

一、IOC控制反转和DI依赖倒置 1、IOC框架核心原理是依赖倒置原则 C#设计模式的六大原则 使用这种思想方式,可以让我们无需关心对象的生成方式,只需要告诉容器我需要的对象即可,而告诉容器我需要对象的方式就叫做DI(依赖注入&…...

【面试突击】Spring 面试实战

🌈🌈🌈🌈🌈🌈🌈🌈 欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术 的推送 发送 资料 可领取 深入理…...

【Linux】Ubuntu 22.04 上安装最新版 Nextcloud Hub 7 (28.0.1)

在 Ubuntu 22.04 上安装 PHP 版本 安装多个 PHP 版本的最简单方法是使用来自 Debian 开发人员 Ondřej Sur 的 PPA。要添加此 PPA,请在终端中运行以下命令。如果要从 PPA 安装软件,则需要 software-properties-common 包。它会自动安装在 Ubuntu 桌面上,但可能会在您的 Ubuntu…...

PHP项目如何自动化测试

开发和测试 测试和开发具有同等重要的作用 从一开始,测试和开发就是相向而行的。测试是开发团队的一支独立的、重要的支柱力量。 测试要具备独立性 独立分析业务需求,独立配置测试环境,独立编写测试脚本,独立开发测试工具。没有…...

WEB 3D技术 three.js 3D贺卡(1) 搭建基本项目环境

好 今天 我也是在网上学的 带着大家一起来做个3D贺卡 首先 我们要创建一个vue3的项目、 先创建一个文件夹 装我们的项目 终端执行 vue create 项目名称 例如 我的名字想叫 greetingCards 就是 vue create greetingcards因为这个名录 里面是全部都小写的 然后 下面选择 vue3 …...

短视频IP运营流程架构SOP模板PPT

【干货资料持续更新,以防走丢】 短视频IP运营流程架构SOP模板PPT 部分资料预览 资料部分是网络整理,仅供学习参考。 抖音运营资料合集(完整资料包含以下内容) 目录 抖音15秒短视频剧本创作公式 在抖音这个短视频平台上&#…...

python爬虫之线程与多进程知识点记录

一、线程 1、概念 线程 在一个进程的内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”叫做线程 是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指…...

基于Java (spring-boot)的停车场管理系统

一、项目介绍 基于Java (spring-boot)的停车场管理系统、预订车位系统、停车缴费系统功能: 登录、注册、后台首页、用户信息管理、车辆信息管理、新增车辆、车位费用设置、停泊车辆查询、车辆进出管理、登录日志查询、个人中心、预定停车位、缴费信息。 适用人群&…...

微软Office 2019 批量授权版

软件介绍 微软办公软件套件Microsoft Office 2019 专业增强版2024年1月批量许可版更新推送!Office2019正式版2018年10月份推出,主要为多人跨平台办公与团队协作打造。Office2019整合对过去三年在Office365里所有功能,包括对Word、Excel、Pow…...

ChatGLM2-6B 大语言模型本地搭建

ChatGLM模型介绍: ChatGLM2-6B 是清华 NLP 团队于不久前发布的中英双语对话模型,它具备了强大的问答和对话功能。拥有最大32K上下文,并且在授权后可免费商用! ChatGLM2-6B的6B代表了训练参数量为60亿,同时运用了模型…...

WindowsServer安装mysql最新版

安装 下载相应mysql安装包: MySQL :: Download MySQL Installer 选择不登陆下载 双击运行下载好的mysql-installer-community-*.*.*.msi 进入类型选择页面,本人需要mysql云服务就选择了server only server only(服务器)&#x…...

gin切片表单验证

在Gin中对切片进行表单验证的步骤与对其他类型的字段进行验证类似。以下是一些基本步骤,我们可以根据具体的需求进行调整: 定义结构体: 创建一个结构体,用于存储表单数据。确保结构体中的字段类型与你预期的表单数据类型一致。 使…...

openssl3.2 - 官方demo学习 - certs

文章目录 openssl3.2 - 官方demo学习 - certs概述笔记官方的实验流程mkcerts.sh - 整理ocsprun.sh - 整理ocspquery.sh - 整理从mkcerts.sh整理出来的27个.bata1_create_certificate_directly.cmda2_Intermediate_CA_request_first.cmda3_Sign_request_CA_extensions.cmda4_Ser…...

Datawhale 大模型基础理论 Day1 引言

开源链接如下:https://github.com/datawhalechina/so-large-lm/blob/main/docs/content/ch01.md 语言模型的概念:即能够赋予每个有意义的词(token)以一定的概率的一个函数的集合。 语言模型可以被用来评估输入的质量&#xff0c…...

HarmonyOS应用开发学习笔记 UIAbility组件与UI的数据同步 EventHub、globalThis

1、 HarmoryOS Ability页面的生命周期 2、 Component自定义组件 3、HarmonyOS 应用开发学习笔记 ets组件生命周期 4、HarmonyOS 应用开发学习笔记 ets组件样式定义 Styles装饰器:定义组件重用样式 Extend装饰器:定义扩展组件样式 5、HarmonyOS 应用开发…...

leetcode每日一题44

130. 被围绕的区域 图论 dfs/bfs dfs代码框架 void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果} }思路:本题要求找到被x围绕的陆…...

idea写sql语句快捷键提醒,mapper注解开发,mybatis

第一步:注入SQL语言 1.显示上下文操作(没有这个选项的话就选中sql然后直接alt回车快捷键)2.注入语言或引用 3.mysql 第二步:配置MySQL数据库连接 1.首先点击侧边的数据库,再点击上面的加号 2.点击数据源&#xff…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

SpringCloudGateway 自定义局部过滤器

场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Unity中的transform.up

2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...

【2D与3D SLAM中的扫描匹配算法全面解析】

引言 扫描匹配(Scan Matching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3D SLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注…...