当前位置: 首页 > news >正文

红黑树(RBTree)

目录​​​​​​​

一、红黑树简介

二、红黑树的来源

三、什么是红黑树

四、红黑树的性质

五、红黑树的节点定义

六、红黑树的操作

6.1、红黑树的查找

6.2、红黑树的插入

七、红黑树的验证

八、红黑树和AVL树的比较


一、红黑树简介

红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf Bayer 于1978年发明,在当时被称为平衡二叉 B 树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的红黑树。红黑树具有良好的效率,它可在 O(logN) 时间内完成查找、增加、删除等操作。

二、红黑树的来源

对于二叉搜索树,如果插入的数据是随机的,那么它就是接近平衡的二叉树,平衡的二叉树,它的操作效率(查询,插入,删除)效率较高,时间复杂度是O(logN)。但是可能会出现一种极端的情况,那就是插入的数据是有序的(递增或者递减),那么所有的节点都会在根节点的右侧或左侧,此时,二叉搜索树就变为了一个链表,它的操作效率就降低了,时间复杂度为O(N),所以可以认为二叉搜索树的时间复杂度介于O(logN)和O(N)之间,视情况而定。那么为了应对这种极端情况,红黑树就出现了,它是具备了某些特性的二叉搜索树,能解决非平衡树问题,红黑树是一种接近平衡的二叉树(说它是接近平衡因为它并没有像AVL树的平衡因子的概念,它只是靠着满足红黑节点的5条性质来维持一种接近平衡的结构,进而提升整体的性能,并没有严格的卡定某个平衡因子来维持绝对平衡)。

三、什么是红黑树

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。

四、红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的 
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点),下图中的那些null节点才是叶子节点,null节点的父节点在红黑树里不将其看作叶子节点

五、红黑树的节点定义

enum Colour
{RED,BLACK,
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};

这里我们默认节点的颜色是红色:

新插入的节点默认为红色,有利于保持红黑树的平衡性质。当插入一个新节点时,由于新节点默认为红色,可以避免破坏红黑树的规则,从而简化了插入操作后的平衡调整。同时,将新节点默认为红色也有助于降低平衡调整的复杂度,使得红黑树的插入和删除操作更加高效。

六、红黑树的操作

红黑树的基本操作和其他树形结构一样,一般都包括查找、插入、删除等操作。前面说到,红黑树是一种自平衡的二叉查找树,既然是二叉查找树的一种,那么查找过程和二叉查找树一样,比较简单,这里不再赘述。相对于查找操作,红黑树的插入和删除操作就要复杂的多。尤其是删除操作,要处理的情况比较多,下面就来分情况讲解。

6.1、红黑树的查找

Node* Find(const K& key){Node* cur = _root;KeyOfT kot;while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return cur;}}return nullptr;}

6.2、红黑树的插入

  • parent:父节点
  • sibling:兄弟节点
  • uncle:叔父节点( parent 的兄弟节点)
  • grand:祖父节点( parent 的父节点)

红黑树的插入过程和二叉查找树插入过程基本类似,不同的地方在于,红黑树插入新节点后,需要进行调整,以满足红黑树的性质。

红黑树节点的颜色要么是红色要么是黑色,那么在插入新节点时,这个节点应该是红色,原因也不难理解。如果插入的节点是黑色,那么这个节点所在路径比其他路径多出一个黑色节点,这个调整起来会比较麻烦(参考红黑树的删除操作,就知道为啥多一个或少一个黑色节点时,调整起来这么麻烦了)。如果插入的节点是红色,此时所有路径上的黑色节点数量不变,仅可能会出现两个连续的红色节点的情况。这种情况下,通过变色和旋转进行调整即可,比之前的简单多了。所以插入的时候将节点设置为红色,可以保证满足性质 1、2、4、5 ,只有性质3不一定满足,需要进行相关调整。如果是添加根节点,则将节点设定为黑色。

检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;
但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一、 cur为红,p为红,g为黑,u存在且为红

解决方法:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

如果g是根节点,调整完成后,需要将g改成黑色;

如果g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整,否则不用。

情况二、cur为红,p为红,g为黑,u不存在  / u存在且为黑

                          

解决方法:

  1. 如果p为g的左孩子,cur为p的左孩子,则进行右单旋转,p变黑,g变红

  2. 如果p为g的右孩子,cur为p的右孩子,则进行左单旋转,p变黑,g变红

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

和情况而类似,只不过情况而是单旋,情况三单旋解决不了问题,所以要双旋。

解决方法:

  1. 如果p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,p旋转后再对g进行右单旋,旋转后将cur变黑,g变红

  2. 如果p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,p旋转后再对g进行左单旋,旋转后将cur变黑,g变红

插入函数的实现:

bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data);if (kot(parent->_data) > kot(data)){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (grandfather->_left == parent){Node* uncle = grandfather->_right;// 情况1:u存在且为红,变色处理,并继续往上处理if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;// 继续往上调整cur = grandfather;parent = cur->_parent;}else // 情况2+3:u不存在/u存在且为黑,旋转+变色{//     g//   p   u// c if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//     g//   p   u//     cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;//parent->_col = RED;grandfather->_col = RED;}break;}}else // (grandfather->_right == parent){//    g//  u   p//        cNode* uncle = grandfather->_left;// 情况1:u存在且为红,变色处理,并继续往上处理if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;// 继续往上调整cur = grandfather;parent = cur->_parent;}else // 情况2+3:u不存在/u存在且为黑,旋转+变色{//    g//  u   p//        cif (cur == parent->_right){RotateL(grandfather);grandfather->_col = RED;parent->_col = BLACK;}else{//    g//  u   p//    cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

旋转代码实现:

void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppnode = parent->_parent;subR->_left = parent;parent->_parent = subR;if (ppnode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* ppnode = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}

七、红黑树的验证

红黑树的检测分为两步:
        1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
        2. 检测其是否满足红黑树的性质
bool IsRBTree()
{//空树if (_root == nullptr){return true;}//根节点为黑色if (_root->_col == RED){cout << "根节点为红色" << endl;return false;}//黑色结点数量各路径上相同//先走一条得到基准值int Blacknum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)Blacknum++;cur = cur->_left;}//检查子树int i = 0;return _IsRBTree(_root, Blacknum, i);
}bool _IsRBTree(Node* root, int blacknum, int count)
{//递归到空节点if (root == nullptr){if (blacknum == count)return true;cout << "各路径上黑色节点个数不同" << endl;return false;}//子节点为红则检查父节点是否为红(通过父节点检查子节点会遇到空节点)if (root->_col == RED && root->_parent->_col == RED){cout << "存在连续红色节点" << endl;return false;}//计数黑结点if (root->_col == BLACK)count++;//递归左右子树return _IsRBTree(root->_left, blacknum, count) && _IsRBTree(root->_right, blacknum, count);
}

八、红黑树和AVL树的比较

  1. AVL树的时间复杂度虽然优于红黑树,但是对于现在的计算机,cpu太快,可以忽略性能差异
  2. 红黑树的插入删除比AVL树更便于控制操作
  3. 红黑树整体性能略优于AVL树(红黑树旋转情况少于AVL树)

相关文章:

红黑树(RBTree)

目录​​​​​​​ 一、红黑树简介 二、红黑树的来源 三、什么是红黑树 四、红黑树的性质 五、红黑树的节点定义 六、红黑树的操作 6.1、红黑树的查找 6.2、红黑树的插入 七、红黑树的验证 八、红黑树和AVL树的比较 一、红黑树简介 红黑树是一种自平衡的二叉查找树…...

训练YOLOS-S

文章目录 1 数据处理2 配置训练参数3 可能会遇到的报错 1 数据处理 修改类别数&#xff1a;在models/detector.py中定位到def build(args):&#xff0c;将num_classes进行修改&#xff0c;改为最大的类别id1。我有4个类别&#xff0c;类别id是从0~3&#xff0c;因此max_id3&am…...

集成SpringCloudAlibaba短信服务 短信验证码

1.1 SpringCloudAlibaba短信服务简介 短信服务&#xff08;Short Message Service&#xff09;是阿里云为用户提供的一种通信服务的能力。 产品优势&#xff1a;覆盖全面、高并发处理、消息堆积处理、开发管理简单、智能监控调度 产品功能&#xff1a;短信通知、短信验证码、…...

存储卷(数据卷)—主要是nfs方式挂载

1、定义 容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的&#xff0c;一旦容器被删除&#xff0c;数据会丢失。k8s基于控制器创建的pod&#xff0c;delete相当于重启&#xff0c;容器的状态会恢复到原始状态。一旦回到原始状态&#xff0c;后天编辑的文件…...

城市酷选模式开发(门店免单排队返利系统)

城市酷选模式开发&#xff08;门店免单排队返利系统&#xff09;【阿巴】城市酷选商城开发免单排队返利小程序搭建、城市酷选模式开发、城市酷选系统商城开发、城市酷选APP系统开发、城市酷选 每经AI快讯&#xff0c;有投资者在投资者互动平台提问&#xff1a;“以塑代钢”已成…...

JNPF低代码引擎到底是什么?

最近听说一款可以免费部署本地进行试用的低代码引擎&#xff0c;源码上支持100%源码&#xff0c;提供的功能和技术支持比较完善。借助这篇篇幅我们了解下JNPF到底是什么&#xff1f; JNPF开发平台是一款PaaS服务为核心的零代码开发平台&#xff0c;平台提供了多租户账号管理、主…...

#基础#使用Jupyter进行Notebook的转换 .ipynb文件导出为.md文件

我们在使用jupyter 写代码后&#xff0c;经常遇到一些写完想把文件转成markdown格式的场景&#xff0c;这里就教你怎么处理相关的问题 使用Jupyter进行Notebook的转换 .ipynb文件导出为.md文件 pip install nbconvert pip install pandoc jupyter nbconvert --to markdown 文…...

工信部颁发的人工智能证书《自然语言与语音处理设计开发工程师》证书到手啦!

工信部颁发的人工智能证书《自然语言与语音处理设计开发工程师》证书拿到手啦&#xff01; 近期正在报考的工信部颁发的人工智能证书还有&#xff1a; 《计算机视觉处理设计开发工程师》中级 2024年1月24日至28日-北京 《自然语言与语音处理设计开发工程师》中级 第二期 20…...

canvasdrawer 微信原生小程序生成海报图片

在小程序中生成海报是一种非常有效的推广方式 用户可以使用小程序的过程中生成小程序海报并分享给他人 通过海报的形式&#xff0c;用户可以直观地了解产品或服务的特点和优势 常见绘制海报方式 目前&#xff0c;小程序海报有两种常见的实现方式&#xff1a; canvas 绘制…...

linux基础学习(3):挂载

挂载可以理解为给磁盘空间一个可访问的入口&#xff0c;那个入口称为挂载点&#xff0c;相当于windows中的盘符。 1.挂载命令mount 1.1直接输入mount 查看系统已挂载的设备 1.2挂载与卸载命令 mount -t 文件系统名 设备文件名 挂载点 | umount 挂载点 或 umount 设…...

[每周一更]-(第82期):认识自然处理语言(NLP)

GPT的大火&#xff0c;带起了行业内大模型的爆发&#xff1b;国内外都开始拥有或者研发自己的大模型&#xff0c;下边我们从NLP来进一步深入了解大模型、AI。 一、什么是NLP&#xff1f; 自然语言处理&#xff08;英语&#xff1a;Natural Language Processing&#xff0c;缩…...

Win11如何设置时间显示秒

1、打开注册表 计算机\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced 2、进入以上路径 Advanced新建dword32位&#xff0c;新建一个文件&#xff0c;设置一个名称 3、修改之前创建的文件 4、重启电脑...

世界人口数据分析与探索

文章目录 世界人口数据集介绍数据集 1&#xff1a;世界国家统计数据&#xff1a;数据集 2&#xff1a;世界人口详细信息&#xff08;2023 年&#xff09;&#xff1a;数据集 3&#xff1a;按年份划分的世界人口&#xff08;1950-2023&#xff09;&#xff1a; 数据分析导入必要…...

自动驾驶的未来:BEV与Occupancy网络全景解析与实战揭秘!

自动驾驶领域中&#xff0c;什么是BEV&#xff1f;什么是Occupancy&#xff1f; 作者&#xff1a;小柠檬 | 来源&#xff1a;公众号「3DCV」 BEV是Bird’s Eye View 的缩写&#xff0c;意为鸟瞰视图。在自动驾驶领域&#xff0c;BEV 是指从车辆上方俯瞰的场景视图。BEV 图像可以…...

大众点评评论采集软件使用教程

导出字段&#xff1a; 店铺ID 评论ID 发布时间 人均消费 评分 详情链接 点赞数 浏览数 评论数 最后更新时间 发布平台 推荐 评论详情 原始评论 图片数 图片链接 用户等级 用户名称 用户头像 VIP 私...

2024年前端面试中JavaScript的30个高频面试题之中级知识

基础知识 高级知识 13. 什么是闭包?闭包的用例有哪些? 闭包是一个功能,它允许函数捕获定义该函数的环境(或保留对作用域中变量的访问)即使在该作用域已经关闭后。 我们可以说闭包是函数和词法环境的组合,其中定义了该函数。 换句话说,闭包为函数提供了访问自己的作用域、…...

postman 简单测试(一)

1.postman官网 Postman API Platform 2.研究了一下postman 一些简单的功能&#xff0c;自己做个记录&#xff0c;同时希望能节约点测试时间。 2.1新建一个 collections 长期测的话&#xff0c;最好注册一个账号&#xff0c;开放更多功能。 2.2新建一个请求 后端要先搭建起来…...

12.1、2、3-同步状态机的结构以及Mealy和Moore状态机的区别

同步状态机的结构以及Mealy和Moore状态机的区别 1&#xff0c;介绍Mealy型状态机和Moore型状态机的两种结构2&#xff0c;设计高速电路的方法 由于寄存器传输级&#xff08;RTL&#xff09;描述的是以时序逻辑抽象所得到的有限状态机为依据&#xff0c;因此&#xff0c;把一个时…...

前端框架前置课Node.js学习(1) fs,path,模块化,CommonJS标准,ECMAScript标准,包

目录 什么是Node.js 定义 作用: 什么是前端工程化 Node.js为何能执行Js fs模块-读写文件 模块 语法: 1.加载fs模块对象 2.写入文件内容 3.读取文件内容 Path模块-路径处理 为什么要使用path模块 语法 URL中的端口号 http模块-创建Web服务 需求 步骤: 案例:浏…...

SpringBoot源码启动流程(待完善)

SpringBoot源码启动流程 1. 构造SpringApplication对象 1.1 推测web应用类型 判断关键类是否存在来区分类型 REACTIVENONESERVLET static WebApplicationType deduceFromClasspath() {if (ClassUtils.isPresent(WEBFLUX_INDICATOR_CLASS, null) && !ClassUtils.isP…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...