回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
目录
- 回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab实现SSA-CNN-GRU-Attention麻雀优化卷积门控循环单元注意力机制多变量回归预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.麻雀算法优化学习率,隐藏层节点,正则化系数;### 模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,10 1e-4]; % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1]; % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1")
tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc") % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制) 目录 回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现SSA…...

使用composer构建软件包时文件(夹)权限设置
在构建软件包的时候你可能会需要对包源内文件或文件夹的权限做出相应的调整,以确保软件包在部署到客户端后可以正常运行。在此之前我们先来了解一下Apple文件系统内文件或文件夹的权限设定。 常见的文件或文件夹会有Owner, Group, Everyone这三种类型的所有权&#…...

【C#】面向对象的三大特性,还记得吗,简单代码举例回顾
欢迎来到《小5讲堂》 大家好,我是全栈小5。 这是《C#》序列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对知识点的理解和掌握。…...
235.【2023年华为OD机试真题(C卷)】机器人搬砖(二分查找-JavaPythonC++JS实现)
🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目二.解题思路三.题解代码Python题解代码JAVA题解…...
git hooks
介绍 当我们在执行git管理仓库代码时,想规范下每个用户的commit内容?想检查下提交的代码规范?想检查下PR是否通过,那么这个时候就需要用到git hooks,git hooks可以在我们进行git操作的关键时机插入我们想要执行的“脚…...

法规更新美国玩具标准ASTM F963-17有更新,最新标准为ASTM F963-23
美国材料试验协会 (ASTM)在10月13日发布了新的玩具安全标准:ASTM F963-23,ASTM F963-17美国联邦法规16 CFR 1250还在使用当中,出口美国的玩具的厂商要引起重视。 ASTM F963-17是什么标准? ASTM F963-17是美国玩具检测标准&#…...

【grpc】利用protobuf实现java或kotlin调用python脚本,含实现过程和全部代码
前言 在一些特殊场景中,我们可能需要使用java或者其他任意语言调用python脚本或sdk等。本文的需求衍生也不例外于此,python端有sdk,但只能在python中调用,于是就有了本文章。 常见的调用方式如jython、python提供http rest接口、…...

Linux网络 ----- 网络文件共享服务之FTP服务
引言 FTP服务是Internet上最早应用于主机之间进行数据传输的基本服务之一。是目前Internet上使用最广泛的文件传送协议 一、FTP概述 FTP(File TransferProtocol,文件传输协议)是典型的C/S架构的应用层协议,需要由服务端软件、客户端软件两个部分共同实…...

如何避免知识付费小程序平台的陷阱?搭建平台的最佳实践
随着知识经济的兴起,知识付费已经成为一种趋势。越来越多的人开始将自己的知识和技能进行变现,而知识付费小程序平台则成为了一个重要的渠道。然而,市面上的知识付费小程序平台琳琅满目,其中不乏一些不良平台,让老实人…...
第89讲:MySQL数据库迁移方面需要考虑的因素以及XBK企业级备份参数
文章目录 MySQL数据库迁移方面需要考虑的因素1.MySQL数据库迁移方面要考虑的因素2.MySQL5.6升级到5.7版本的方法3.MySQL迁移到其他数据库的方法4.为什么要从XBK备份中还原某张表的数据5.从XBK备份中还原某张表的数据6.XtrBackup企业级备份参数 MySQL数据库迁移方面需要考虑的因…...

Python爬虫经典实战项目——电商数据爬取!
电商数据采集爬虫背景 在如今这个网购风云从不间歇的时代,购物狂欢持续不断,一年一度的“6.18年中大促”、“11.11购物节”等等成为了网购电商平台的盛宴。在买买买的同时,“如何省钱?”成为了大家最关心的问题。 比价、返利、优…...

Qt 快捷键设置
以 “在编辑时自动补齐”快捷键 为例: 位置:红色 搜索快捷键:蓝色 修改方式:绿色 快捷键:黄色...
【C++】取整函数ceil(),floor(),round()
使用 //引入头文件 #include <cmath> //函数使用 double around(double x) double afloor(double x) double aceil(double x) 结果取值 floor(x) 返回是小于或等于x的最大整数,如floor(-9.9)-10,floor(9.9)9;若为整数,最后的结果等于本…...
GoLang刷题之leetcode
题目42:接雨水 题目描述: 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 题解: 对于每一个横坐标能接到的雨水量max(左侧最大纵坐标,右侧最大…...
uniapp如何分包加载
在uni-app中,可以通过配置manifest.json文件来实现分包加载。以下是具体操作步骤: 在项目根目录下找到并打开manifest.json文件。在"uni-app"节点中,找到并修改"subPackages"节点,添加需要分包的页面路径。 …...

019、错误处理:不可恢复错误与panic!
鉴于上一篇文章过长,不方便大家阅读和理解,因此关于Rust中的错误处理, 我将分以下3篇来讲。 另外,随着我们学习的不断深入,难度也会越来越大,但不用担心。接下来只需要让自己的脚步慢一些,认真搞…...

jar包部署到linux虚拟机的docker中之后连不上mysql
前言: 跟着黑马学习docker的时候,将java项目部署到了docker中,运行访问报错,反馈连不上mysql。 错误描述: 方法解决: 概述:在虚拟中中,我进入项目容器的内部,尝试ping…...

如何筛选小红书护肤达人,笔记类型怎么选?
网络时代,借助KOL来放大产品的声量和产量,是品牌的常见策略,但是,不同的产品对应不同的KOL,价值是完全不一样。如何筛选达人,已经成为了品牌方的必修课!今天我们和大家分享下如何筛选小红书护肤达人&#x…...

红黑树(RBTree)
目录 一、红黑树简介 二、红黑树的来源 三、什么是红黑树 四、红黑树的性质 五、红黑树的节点定义 六、红黑树的操作 6.1、红黑树的查找 6.2、红黑树的插入 七、红黑树的验证 八、红黑树和AVL树的比较 一、红黑树简介 红黑树是一种自平衡的二叉查找树…...

训练YOLOS-S
文章目录 1 数据处理2 配置训练参数3 可能会遇到的报错 1 数据处理 修改类别数:在models/detector.py中定位到def build(args):,将num_classes进行修改,改为最大的类别id1。我有4个类别,类别id是从0~3,因此max_id3&am…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...