当前位置: 首页 > news >正文

动态规划思想案例刨析

动态规划的思想

动态规划解决问题的核心思想是“重叠子问题”和“最优子结构”。

重叠子问题:在复杂问题中,往往存在许多重复的子问题。动态规划通过避免重复计算,将子问题的解保存起来,以便在需要时直接引用,从而提高效率。通过记忆化存储或者使用动态规划表来实现。

最优子结构:如果一个问题的最优解包含了其子问题的最优解,那么我们称这个问题具有最优子结构。动态规划利用最优子结构的性质,将问题划分为一系列规模较小的子问题,通过求解子问题的最优解来得到原问题的最优解。

动态规划的应用步骤

使用动态规划解决问题一般包括以下步骤:

  1. 定义状态:明确问题的状态,即问题的子问题是什么,以及如何表示子问题的状态。状态的选择通常与问题的特性相关。

  2. 确定状态转移方程:根据问题的最优子结构,确定子问题之间的关系,即如何通过子问题的最优解来求解原问题的最优解。这个关系可以用状态转移方程来表示。

  3. 确定初始条件和边界情况:确定初始状态和边界情况,即最简单的子问题的解。

  4. 计算顺序:确定计算子问题的顺序,通常是自底向上或者自顶向下的方式。

  5. 计算最优解:根据状态转移方程和初始条件,计算子问题的最优解,并逐步计算得到原问题的最优解。

动态规划的应用案例

动态规划可以应用于各种问题领域,如:

  • 背包问题:0-1背包问题、完全背包问题等。
  • 最短路径问题:迪杰斯特拉算法、弗洛伊德算法等。
  • 编辑距离问题:计算两个字符串之间的最小编辑操作次数。
  • 斐波那契数列:通过动态规划的方式计算斐波那契数列的第n项。
  • 矩阵链乘法:计算矩阵相乘的最优顺序。

具体代码分析
1. 背包问题(Knapsack Problem):

背包问题是一个经典的优化问题,可以分为01背包问题和完全背包问题。这里以01背包问题为例,即每个物品只能选择放入背包一次或不放入。

1,动态规划解决01背包问题的代码示例:

public class KnapsackProblem {public static int knapsack(int[] weights, int[] values, int capacity) {int n = weights.length;int[][] dp = new int[n + 1][capacity + 1];// 初始化第一行和第一列为0,表示没有物品或容量为0时的最大价值为0for (int i = 0; i <= n; i++) {dp[i][0] = 0;}for (int j = 0; j <= capacity; j++) {dp[0][j] = 0;}// 动态规划求解for (int i = 1; i <= n; i++) {for (int j = 1; j <= capacity; j++) {if (weights[i - 1] <= j) {// 当前物品的重量小于等于背包容量,可以选择放入或不放入背包dp[i][j] = Math.max(values[i - 1] + dp[i - 1][j - weights[i - 1]], dp[i - 1][j]);} else {// 当前物品的重量大于背包容量,不能放入背包dp[i][j] = dp[i - 1][j];}}}return dp[n][capacity];}public static void main(String[] args) {int[] weights = {2, 3, 4, 5};int[] values = {3, 4, 5, 6};int capacity = 8;int maxVal = knapsack(weights, values, capacity);System.out.println("背包能够装下的最大价值为:" + maxVal);}
}

代码解释:

  • weights数组存储物品的重量,values数组存储物品的价值,capacity表示背包的容量。
  • dp是一个二维数组,dp[i][j]表示前i个物品在背包容量为j时的最大价值。
  • 动态规划的核心思想是通过填充dp数组来逐步计算最优解。
  • 外部两层循环用于遍历每个物品和每个背包容量。
  • 内部的条件判断根据当前物品的重量,决定是否放入背包以获得最大价值。
  • 最终返回dp[n][capacity],即前n个物品在背包容量为capacity时的最大价值。
    完全背包问题是一个经典的动态规划问题,它可以描述为在给定背包容量和一组物品的情况下,选择物品放入背包,使得背包中物品的总价值最大化。与0-1背包问题不同的是,完全背包问题中每个物品可以选择无限次放入背包。

2,完全背包问题的动态规划求解方法:

假设有N个物品,它们的重量分别为w[1], w[2], …, w[N],价值分别为v[1], v[2], …, v[N],背包的容量为C。我们定义一个二维数组dp[N+1][C+1],其中dp[i][j]表示在前i个物品中选择,且背包容量为j时的最大总价值。

初始化dp数组中的所有元素为0。然后我们从前往后遍历物品,对于每个物品i,从容量0到C依次计算dp[i][j]的值。

对于dp[i][j]的计算,有两种情况:

  1. 不选择当前物品i:dp[i][j] = dp[i-1][j],即背包容量为j时,前i个物品的最大总价值与前i-1个物品的最大总价值相同。
  2. 选择当前物品i:dp[i][j] = dp[i][j-w[i]] + v[i],即背包容量为j时,考虑物品i放入背包,此时总价值为dp[i][j-w[i]](在当前物品i的基础上减去物品i的重量w[i],背包容量减少),再加上物品i的价值v[i]。

综合以上两种情况,dp[i][j]的最大值即为dp[i-1][j]和dp[i][j-w[i]] + v[i]的较大值。

最终,dp[N][C]即为问题的解,表示在前N个物品中选择,且背包容量为C时的最大总价值。

以下是完全背包问题的代码示例(使用Java语言):

public class Knapsack {public static int knapsack(int[] weights, int[] values, int capacity) {int n = weights.length;int[][] dp = new int[n + 1][capacity + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= capacity; j++) {if (weights[i - 1] <= j) {dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - weights[i - 1]] + values[i - 1]);} else {dp[i][j] = dp[i - 1][j];}}}return dp[n][capacity];}public static void main(String[] args) {int[] weights = {2, 3, 4, 5};int[] values = {3, 4, 5, 6};int capacity = 8;int maxTotalValue = knapsack(weights, values, capacity);System.out.println("背包中物品的最大总价值为:" + maxTotalValue);}
}

这个示例代码中,weights数组和values数组分别表示物品的重量和价值,capacity表示背包的容量。最后输出的maxTotalValue即为背包中物品的最大总价值。

2. 打家劫舍问题(House Robber Problem):

打家劫舍问题是一个经典的动态规划问题,可以形象地描述为在一条街上的房屋中选择一些房屋进行盗窃,但不能同时盗窃相邻的房屋。目标是盗窃到的金额最大。

以下是用动态规划解决打家劫舍问题的代码示例:

public class HouseRobber {public static int rob(int[] nums) {int n = nums.length;if (n == 0) {return 0;}if (n == 1) {return nums[0];}int[] dp = new int[n];dp[0] = nums[0];dp[1] = Math.max(nums[0], nums[1]);for(int i = 2; i < n; i++) {dp[i] = Math.max(nums[i] + dp[i - 2], dp[i - 1]);}return dp[n - 1];}public static void main(String[] args) {int[] nums = {1, 2, 3, 1};int maxAmount = rob(nums);System.out.println("能够盗窃到的最大金额为:" + maxAmount);}
}

代码解释:

  • nums数组存储每个房屋中的金额。
  • dp数组存储从第一个房屋到当前房屋的最大金额。
  • 初始化dp[0]为第一个房屋的金额,dp[1]为第一个和第二个房屋中金额较大的一个。
  • 从第三个房屋开始,每次选择盗窃当前房屋和前两个房屋中金额较大的一个,将结果存入dp[i]
  • 最终返回dp[n - 1],即最后一个房屋的最大金额。

3. 最长递增子序列(Longest Increasing Subsequence):

最长递增子序列问题是要找到给定序列中的最长递增子序列的长度。以下是用动态规划解决最长递增子序列问题的代码示例:

public class LongestIncreasingSubsequence {public static int lengthOfLIS(int[] nums) {int n = nums.length;int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) {dp[i] = Math.max(dp[i], dp[j] + 1);}}}int maxLength = 0;for (int len : dp) {maxLength = Math.max(maxLength, len);}return maxLength;}public static void main(String[] args) {int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};int maxLength = lengthOfLIS(nums);System.out.println("最长递增子序列的长度为:" + maxLength);}
}

代码解释:

  • nums数组存储给定的序列。
  • dp数组用于记录每个位置上的最长递增子序列长度,初始值都为1。
  • 外部两层循环用于遍历每个位置,并比较当前位置与之前位置的大小关系。
  • 如果当前位置的值大于之前位置的值,则更新当前位置上的最长递增子序列长度为之前位置中最大长度加1。
  • 最终返回dp数组中的最大值,即为最长递增子序列的长度。

4. 矩阵连乘积问题(Matrix Chain Multiplication):

矩阵连乘积问题是一个经典的动态规划问题,要求找到一种最优的矩阵相乘顺序,使得整个连乘的计算量最小。以下是用动态规划解决矩阵连乘积问题的代码示例:

public class MatrixChainMultiplication {public static int matrixChainOrder(int[] dimensions) {int n = dimensions.length - 1;int[][] dp = new int[n][n];for (int len = 2; len <= n; len++) {for (int i = 0; i < n - len + 1; i++) {int j = i + len - 1;dp[i][j] = Integer.MAX_VALUE;for (int k = i; k < j; k++) {int cost = dp[i][k] + dp[k + 1][j] + dimensions[i] * dimensions[k + 1] * dimensions[j + 1];if (cost < dp[i][j]) {dp[i][j] = cost;}}}}return dp[0][n - 1];}public static void main(String[] args) {int[] dimensions = {10, 30, 5, 60};int minCost = matrixChainOrder(dimensions);System.out.println("最小的矩阵连乘积计算量为:" + minCost);}
}

代码解释:

  • dimensions数组存储矩阵的维度信息,如[10, 30, 5, 60]表示有三个矩阵,维度分别为10x30、30x5和5x60。
  • dp数组用于记录每个子问题的最小计算量。
  • 外部两层循环用于遍历子问题的长度,从2开始逐步增加。
  • 内部的循环用于遍历每个子问题的起始位置和结束位置,并计算当前情况的最小计算量。
  • 在内部循环中,通过尝试不同的划分点,计算出将两个子问题相乘的计算量,并选择最小的计算量作为当前子问题的最优解。
  • 最终返回dp[0][n - 1],即整个矩阵连乘的最小计算量。

总结

动态规划是一种将复杂问题化繁为简的求解方法。通过将问题划分为一系列子问题,并通过求解子问题的最优解来得到原问题的最优解。动态规划的核心思想是重叠子问题和最优子结构。通过定义状态、确定状态转移方程、确定初始条件和边界情况、计算顺序以及计算最优解这几个步骤,我们可以有效地应用动态规划解决各种问题。

相关文章:

动态规划思想案例刨析

动态规划的思想 动态规划解决问题的核心思想是“重叠子问题”和“最优子结构”。 重叠子问题&#xff1a;在复杂问题中&#xff0c;往往存在许多重复的子问题。动态规划通过避免重复计算&#xff0c;将子问题的解保存起来&#xff0c;以便在需要时直接引用&#xff0c;从而提…...

vtk9.3 配置 visual studio 2019 运行环境 和运行实例详解

&#xff08;1&#xff09;包含文件配置&#xff1a; 项目--属性--VC目录&#xff0c;在包含目录中把include文件夹的地址加进去&#xff0c;一直要到下一级 vtk-9.3目录下&#xff0c; 小知识&#xff1a; 在Visual Studio 2019中运行项目时&#xff0c;如果项目中使用了第三…...

腾讯云添加SSL证书

一、进入腾讯云SSL证书&#xff1a; ssl证书控制台地址 选择“我的证书”&#xff0c;点击"申请免费证书" 2、填写域名和邮箱&#xff0c;点击“提交申请” 在此页面中会出现主机记录和记录值。 2、进入云解析 DNS&#xff1a;云解析DNS地址 进入我的解析-记录…...

CentOS下用rpm安装软件时报错error: Failed dependencies

在CentOS下用rpm安装软件时会报如下错误&#xff1a; 1、安装时提示&#xff1a; [rootdb software]# rpm -ivh ksh-20120801-254.el8.x86_64.rpm warning: ksh-20120801-254.el8.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID 8483c65d: NOKEY error: Failed depende…...

Vue3+Vite连接高德地图JS API——地图显示、输入搜索

1 开通高德地图Web端JS API服务 1、进入高德地图API官网&#xff08;https://lbs.amap.com/&#xff09;&#xff1a; 2、注册登录。 3、进入控制台。 4、点击“应用管理”&#xff0c;点击“我的应用”&#xff0c;创建新应用。 5、添加Key&#xff0c;服务平台选择“Web端&…...

一台java服务器可以跑多少个线程?

一台java服务器可以跑多少个线程&#xff1f; 一台java服务器能跑多少个线程&#xff1f;这个问题来自一次线上报警如下图&#xff0c;超过了我们的配置阈值。 打出jstack文件&#xff0c;通过IBM Thread and Monitor Dump Analyzer for Java工具查看如下&#xff1a; 共计166…...

【Python 千题 —— 基础篇】猜数字小游戏

题目描述 题目描述 猜数字。利用 random 函数随机生成一个1~100之间的数并存储在变量中&#xff0c;然后使用条件判断以及循环方式编写一个猜数字的环节&#xff1a; 如果输入的数字大于随机生成的数字&#xff0c;则输出“猜大了”如果输入的数字小于随机生成的数字&#x…...

Android Media3 ExoPlayer 如何正确设置缓存大小

在播放音视频时&#xff0c;如何开启 Android Media3 ExoPlayer 缓存&#xff0c;请参考笔者另外一篇文章&#xff1a; Android Media3 Exoplayer 开启缓存功能 笔者在设置 ExoPlayer 的缓存大小时&#xff0c;遇到一个非常奇怪的问题&#xff0c;例如&#xff0c;设置最大缓存…...

WPF实现右键选定TreeViewItem

在WPF中&#xff0c;TreeView默认情况是不支持右键选定的&#xff0c;也就是说&#xff0c;当右键点击某节点时&#xff0c;是无法选中该节点的。当我们想在TreeViewItem中实现右键菜单时&#xff0c;往往希望在弹出菜单的同时选中该节点&#xff0c;以使得菜单针对选中的节点生…...

蓝桥杯 java 重复字符串

题目描述 * 如果一个字符串S恰好可以由某个字符串重复K次得到&#xff0c;我们就称S是K次重复字符串。 * 例如 abcabcabc 可以看作是 abc重复3次得到&#xff0c;所以 abcabcabc 是3次重复字符串。 * 同理 aaaaaa 既是2次重复字符串、又是3次重复字符串和6次重复字符串。 * 现在…...

Vue实战:两种方式创建Vue项目

文章目录 一、实战概述二、实战步骤&#xff08;一&#xff09;安装Vue CLI脚手架1、从Node.js官网下载LTS版本2、安装Node.js到指定目录3、配置Node.js环境变量4、查看node版本5、查看npm版本6、安装Vue Cli脚手架7、查看Vue Cli版本 &#xff08;二&#xff09;命令行方式构建…...

不同打包工具下的环境变量配置方式对比

本文作者为 360 奇舞团前端开发工程师 天明 前言 在现代的JavaScript应用程序开发中&#xff0c;环境变量的配置是至关重要的。不同的应用场景和部署环境可能需要不同的配置&#xff0c;例如开发、测试和生产环境。最常见的需求是根据不同的环境&#xff0c;配置如是否开启sour…...

5个99%的人可能不知道的实用程序库!

前言 作为一名前端开发者,这些 JavaScript 库极大地提高了我的工作效率,如格式化日期、处理 URL 参数和调试移动网页。朋友们,我想和你们分享这些库。 1. 使用 “Day.js” 来格式化日期和时间 链接 作为开发者,我已经厌倦了在 JavaScript 中操作日期和时间,因为它太麻烦了。…...

shell脚本,ADB

Linux命令行命令是系统内置的命令或用户自定义的脚本&#xff08;shell 脚本&#xff0c;.sh扩展名结尾&#xff09;&#xff0c;可以通过终端输入命令来执行。这些命令通常存储在Linux系统的/bin、/usr/bin、/sbin、/usr/sbin等目录下&#xff0c;也可以在$PATH环境变量中指定…...

微服务治理:微服务安全详解

微服务安全旨在保护微服务架构中每一个独立的服务。与传统单体应用程序不同&#xff0c;它们在单点应用安全措施&#xff0c;微服务由于其独立性&#xff0c;需要分布式安全方法。 为何关注微服务安全&#xff1f; 攻击面扩大: 更多服务暴露在外&#xff0c;意味着攻击者拥有…...

迅为RK3588开发板编译 Buildroot单独编译图形化界面三

第三步&#xff1a;编译 Recovery 首先在 linux 源码目录下输入以下命令进入编译的 UI 界面&#xff0c;进入之后如下所示&#xff1a; ./build.sh 然后将光标移动到第四个 recovery&#xff0c;点击回车即可开始 recovery 的编译&#xff0c;编译过程如下所示&#xff1a; 编…...

yum仓库及NFS共享

目录 一.yum仓库的基本原理 1.Yum概述&#xff1a; 2.Yum实现过程&#xff1a; 二. yum配置文件及命令&#xff1a; 1. 主配置文件&#xff1a; 2. 仓库设置文件&#xff1a; 3 .日志文件&#xff1a; ​编辑4.yum命令详解&#xff1a; 三. 搭建仓库的方式&#xff1a; …...

【Web】CTFSHOW PHP特性刷题记录(全)

知其然知其所以然&#xff0c;尽量把每种特性都详细讲明白。 目录 web89 web90 web91 web92 web93 web94 web95 web96 web97 web98 web99 web100 web101 web102 web103 web104 web105 web106 web107 web108 web109 web110 web111 web112 web113 web…...

[Docker] Docker为什么出现

Docker为什么出现 一款产品&#xff1a; 开发–上线 -->两套环境 | 应用配置 开发即运维&#xff01; 环境配置十分麻烦&#xff0c;每一个机器都要部署环境&#xff08;Redis, ES, Hadoop&#xff09; 费时费力 项目带上配置环境安装打包。 传统&#xff1a; 开发jar&…...

小程序基础学习(页面跳转传参)

目录 正向传参 原理&#xff1a;直接在url里面拼接参数即可 接受参数 ​编辑 已经跳转到的页面用onLoad函数来接受即可然后写回页面展示即可 逆向传参 原理&#xff1a;通过使用 getCurrentPages()这个方法来获取返回页面列表&#xff0c;然后再用页面.setData&#xff…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...