当前位置: 首页 > news >正文

2024美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2024美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模…...

GitHub图床搭建

1 准备Github账号 如果没有Github账号需要先在官网注册一个账号 2 创建仓库 在github上创建一个仓库&#xff0c;随便一个普通的仓库就行&#xff0c;选择公共仓库 并且配置github仓库的pages&#xff0c;选择默认访问的分支及默认路径 3 github token获取 github token创…...

DQN、Double DQN、Dueling DQN、Per DQN、NoisyDQN 学习笔记

文章目录 DQN (Deep Q-Network)说明伪代码应用范围 Double DQN说明伪代码应用范围 Dueling DQN实现原理应用范围伪代码 Per DQN (Prioritized Experience Replay DQN)应用范围伪代码 NoisyDQN伪代码应用范围 部分内容与图片摘自&#xff1a;JoyRL 、 EasyRL DQN (Deep Q-Networ…...

C++ 编程需要什么样的开发环境?

C 编程需要什么样的开发环境&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#…...

Unity文字游戏开发日志(1)—— 打字机效果

作者是一名OIer,因为兴趣&#xff0c;想在寒假期间开发一款文字游戏的demo。 本博客仅用作记录&#xff0c;马蜂极度不符合规范。 但是&#xff0c;可以用来避坑。 1.等待功能——使用的是协程函数&#xff0c;且调用与常规调用函数不同。 private IEnumerator Sco(){isScoe…...

从0开始python学习-48.pytest框架之断言

目录 1. 响应进行断言 1.1 在yaml用例中写入断言内容 1.2 封装断言方法 1.3 在执行流程中加入断言判断内容 2. 数据库数据断言 2.1 在yaml用例中写入断言内容 2.2 连接数据库并封装执行sql的方法 2.3 封装后校验方法是否可执行 2.4 使用之前封装的断言方法&#xff0c…...

学习JavaEE的日子 day13补 深入类加载机制及底层

深入类加载机制 初识类加载过程 使用某个类时&#xff0c;如果该类的class文件没有加载到内存时&#xff0c;则系统会通过以下三个步骤来对该类进行初始化 1.类的加载&#xff08;Load&#xff09; → 2.类的连接&#xff08;Link&#xff09; → 3.类的初始化&#xff08;In…...

C# WebApi传参及Postman调试

概述 欢迎来到本文&#xff0c;本篇文章将会探讨C# WebApi中传递参数的方法。在WebApi中&#xff0c;参数传递是一个非常重要的概念&#xff0c;因为它使得我们能够从客户端获取数据&#xff0c;并将数据传递到服务器端进行处理。WebApi是一种使用HTTP协议进行通信的RESTful服…...

npm install 卡住不动的六种解决方法

1.重装 检查网络设置&#xff0c;删除node_modules重新npm install 2. 配置npm代理 // 配置nmp代理来提高速度&#xff0c;如设置淘宝镜像 npm config set registry https://registry.npm.taobao.org// 查看配置是否成功 npm config get registry// 成功后重新npm install安…...

Vue高级(二)

3.搭建vuex环境 创建文件&#xff1a;src/store/index.js //引入Vue核心库import Vue from vue//引入Vueximport Vuex from vuex//应用Vuex插件Vue.use(Vuex)//准备actions对象——响应组件中用户的动作const actions {}//准备mutations对象——修改state中的数据const mutat…...

MongoDB面试系列-02

1. MongoDB 中必须调用 getLastError 来确保写操作生效吗&#xff1f; MongoDB中不管有没有调用getLastError&#xff08;又称为Safe Mode&#xff09;&#xff0c;服务器执行的操作都会一样。 而调用getLastError只是为了确认写操作是否成功提交&#xff0c;但是写操作的安全…...

2024.1.17

今天我已经回家了&#xff0c;感觉家就像我的温柔乡一样&#xff0c;一到了家&#xff0c;就不想学习了&#xff0c;这是很不对的事情&#xff0c;不该如此堕落&#xff0c;还是要像在学校一样该干什么干什么&#xff0c;所以说还是复习和写了一下曾经写过的代码。 #define _C…...

openssl3.2 - 官方demo学习 - encrypt - rsa_encrypt.c

文章目录 openssl3.2 - 官方demo学习 - encrypt - rsa_encrypt.c概述笔记END openssl3.2 - 官方demo学习 - encrypt - rsa_encrypt.c 概述 从内存中的DER共钥数据构造pub_key, 用公钥加密明文, 输出密文. 非对称加密 从内存中的DER私钥数据构造priv_key, 用私钥解密密文, 输出…...

ARCGIS PRO SDK Annotation 概念及操作

使用Annotation的API功能。Annotation 的API功能位于ArcGIS.Core.dll中。Annotation API通常与地理数据库、地图创作和编辑结合使用。ArcGIS.Core.dll ArcGIS.Core.Data.map API中的几乎所有方法都应该在MCT上调用。 一、Annotation featureclass 1、从GeodatabaseGeodatabase数…...

dp专题13 零钱兑换II

本题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 根据题意&#xff0c;这是一道很裸的背包问题&#xff0c;其中这里是返回 背包方案数 的。 我们可以直接推出公式 &#xff1a; dp [ j ] dp[ j - coins[ i ] ] 在我之前…...

el-dialog嵌套使用,只显示遮罩层的问题

直接上解决方法 <!-- 错误写法 --><el-dialog><el-dialog></el-dialog></el-dialog><!-- 正确写法 --><el-dialog></el-dialog><el-dialog></el-dialog>我是不建议嵌套使用的&#xff0c;平级也能调用&#xff0c…...

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 例3-5 CSS3 动画

代码 <!doctype html> <html> <head> <meta charset"utf-8"> <title>CSS3 动画</title> <style> .img {width: 150px; } keyframes rotate { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg);} } img…...

一款实用的.NET Core加密解密工具类库

前言 在我们日常开发工作中&#xff0c;为了数据安全问题对数据加密、解密是必不可少的。加密方式有很多种如常见的AES&#xff0c;RSA&#xff0c;MD5&#xff0c;SAH1&#xff0c;SAH256&#xff0c;DES等&#xff0c;这时候假如我们有一个封装的对应加密解密工具类可以直接…...

C/C++内存布局

1. C 结构体的内存布局 以一个例子来看struct的内存结构 #define NP_FUNC_WRAPPER __attribute__((optimize(0)))struct StructBody {int first_int_placeholder;int second_int_placeholder;double third_double_placeholder; };class ClassBody {public:int first_int_place…...

springboot(ssm母婴全程服务管理系统 母婴用品服务商城Java系统

springboot(ssm母婴全程服务管理系统 母婴用品服务商城Java系统 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&#xf…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

标注工具核心架构分析——主窗口的图像显示

&#x1f3d7;️ 标注工具核心架构分析 &#x1f4cb; 系统概述 主要有两个核心类&#xff0c;采用经典的 Scene-View 架构模式&#xff1a; &#x1f3af; 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 &#x1f527; 关键函数&…...