李沐深度学习-线性回归从零开始
# 核心Tensor,autograd
import torch
from IPython import display
import numpy as np
import random
from matplotlib import pyplot as pltimport syssys.path.append('路径')
from d2lzh_pytorch import *'''
backward()函数:一次小批量执行完在进行反向传播
线性回归模型步骤;1.数据处理2.模型定义:根据矩阵形式运算,模型可以一次计算多个样本,比如X:1000x2, w:2x1 则模型可以一次计算1000个样本3.损失函数:4.优化算法:sgd则是小批量中每个样本loss运行完后,对应参数的梯度进行了累加,得到一个小批量的代表梯度 w1,w2,b然后将每个小批量的参数梯度进行梯度下降5.模型预测
'''
# ------------------------------------------------------------------------
# 生成数据集
'''
样本X=1000,特征=2,w=2,-3.4;b=4.2 随机噪声ξ y=Xw+b+ξ
噪声服从均值为0,标准差为0.01的正态分布 噪声代表了数据集中无意义的干扰
'''
num_inputs = 2 # 特征数
num_examples = 1000 # 样本数量
true_w = [2, -3.4] # w
true_b = 4.3 # b
# 生成所有包含特征 1000x2的样本 向量
features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
# 下列运算属于矢量运算 预测y 表达式 是个向量,1000x1
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 添加符合正态分布的噪声
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)# set_figsize()
# plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
# plt.savefig('/home/eilab2023/yml/project/limu/picture/picture.png')# 读取数据集# ---------------------------------------------------------------------------------------------# ---------------------------------------------------------------------------------------------
# 定义模型# ---------------------------------------------------------------------------------------------# 损失函数
# ---------------------------------------------------------------------------------------------# 优化算法
# ---------------------------------------------------------------------------------------------# 模型训练
# ---------------------------------------------------------------------------------------------
lr = 0.03
num_epoch = 3
net = linreg
loss = squared_loss
'''
每次返回一个batch-size大小随机样本的特征和标签
'''
batch_size = 10
# 初始化模型参数 w b 都是列矩阵 上面的是确定的公式,x,w,b都是确定的,label确定。这里的参数是初始化模拟的
# 一般是,X确定,label确定,然后初始化w,b,在模型训练寻找最优解,这里提前确定是为了方便
w = torch.tensor((np.random.normal(0, 0.01, (num_inputs, 1))), dtype=torch.float32)
b = torch.tensor(1, dtype=torch.float32)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
# 外部定义了变量w后若在方法内有改变w,则该变量值会随着改变for epoch in range(num_epoch):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y).sum() # 小批量的损失计算完l.backward() # 计算小批量的样本参数梯度,这里每个样本的参数梯度会自动累加sgd([w, b], lr, batch_size) # 一个小批量出一个w,b 梯度下降算法# 一个小批量的参数更新后就要对参数的梯度进行清零操作w.grad.data.zero_()b.grad.data.zero_()train_l = loss(net(features, w, b), labels) # 这里的w,b是一轮所有的批量更新完成之后得到的最新的值,然后用于所有的样本进行损失计算print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item())) # 因为loss是一个1000x1的一个张量相关文章:
李沐深度学习-线性回归从零开始
# 核心Tensor,autograd import torch from IPython import display import numpy as np import random from matplotlib import pyplot as pltimport syssys.path.append(路径) from d2lzh_pytorch import * backward()函数:一次小批量执行完在进行反向传播 线性回归…...
CentOS 8.5 安装图解
特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...
好用的流程图工具
分享工作中常用的装逼工具 目前市面上的流程图或者思维导图工具挺多的,但是有的会限制使用数量或者收费,典型的有processon、Xmind,推荐今天Mermaid(官网)。 快速上手 中文教程:Mermaid 初学者用户指南 | Mermaid 中文网。我们选择…...
数据结构:链式栈
stack.h /* * 文件名称:stack.h * 创 建 者:cxy * 创建日期:2024年01月18日 * 描 述: */ #ifndef _STACK_H #define _STACK_H#include <stdio.h> #include <stdlib.h>typedef struct stack{int data…...
openssl3.2 - 官方demo学习 - mac - gmac.c
文章目录 openssl3.2 - 官方demo学习 - mac - gmac.c概述笔记END openssl3.2 - 官方demo学习 - mac - gmac.c 概述 使用GMAC算法, 设置参数(指定加密算法 e.g. AES-128-GCM, 设置iv) 用key执行初始化, 然后对明文生成MAC数据 官方注释给出建议, key, iv最好不要硬编码出现在程…...
HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍
HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍。 Hugging Face是一家开源模型库公司。 2023年5月10日,Hugging Face宣布C轮1亿美元融资,由Lux Capital领投,红杉资本、Coatue、Betaworks、NBA球星Kevin Durant等跟投…...
python的tabulate包在命令行下输出表格不对齐
用tabulate可以在命令行下输出表格。 from tabulate import tabulate# 定义表头 headers [列1, 列2, 列3]# 每行的内容 rows [] rows.append((张三,数学,英语)) rows.append((李四,信息科技,数学))# 使用 tabulate 函数生成表格 output tabulate(rows, headersheaders, tab…...
LLM之幻觉(二):大语言模型LLM幻觉缓减技术综述
LLM幻觉缓减技术分为两大主流,梯度方法和非梯度方法。梯度方法是指对基本LLM进行微调;而非梯度方法主要是在推理时使用Prompt工程技术。LLM幻觉缓减技术,如下图所示: LLM幻觉缓减技术值得注意的是: 检索增强生成&…...
C# 使用多线程,关闭窗体时,退出所有线程
this.Close(); 只是关闭当前窗口,若不是主窗体的话,是无法退出程序的,另外若有托管线程(非主线程),也无法干净地退出;Application.Exit(); 强制所有消息中止,退出所有的窗体&…...
数据结构实验6:图的应用
目录 一、实验目的 1. 邻接矩阵 2. 邻接矩阵表示图的结构定义 3. 图的初始化 4. 边的添加 5. 边的删除 6. Dijkstra算法 三、实验内容 实验内容 代码 截图 分析 一、实验目的 1.掌握图的邻接矩阵的存储定义; 2.掌握图的最短路径…...
Spring Boot整合JUnit
引言 测试是软件开发过程中不可或缺的一环,而JUnit作为Java生态中最流行的测试框架之一,与Spring Boot的整合为开发者提供了一套强大的测试工具。本文将讨论Spring Boot整合JUnit的技术细节、最佳实践以及测试驱动开发(TDD)的优雅…...
uniapp写小程序实现清除缓存(存储/获取/移除/清空)
在uni-app中,可以使用uni.setStorageSync和uni.getStorageSync来进行数据的存储和获取。而移除缓存数据可以使用uni.removeStorageSync,清空缓存数据可以使用uni.clearStorageSync。 以下是使用示例: 存储数据: uni.setStorage…...
js菜单隐藏显示
1、树状结构对应的表: 2、生成menulist的SQL语句 select {"id":"MenuID","parent":"ParentID","FirstLvMenu":"FirstLvMenu", "text":"MenuName","url":"MenuUrl",&quo…...
学习Spring的第五天(Bean的依赖注入)
Bean的依赖注入有两种方式: 一 . 常规Bean的依赖注入 很简单,不过多赘述了,注意ref: 是构造函数或set方法的参数,一般为对象, value: 是构造函数或set方法的参数,一般为值. 看下图 1.1 下面来演示一下集合数据类型的关于Bean的依赖注入 1.1.1这是List的注入(演示泛型为Strin…...
GAN在图像数据增强中的应用
在图像数据增强领域,生成对抗网络(GAN)的应用主要集中在通过生成新的图像数据来扩展现有数据集的规模和多样性。这种方法特别适用于训练数据有限的情况,可以通过增加数据的多样性来提高机器学习模型的性能和泛化能力。 以下是GAN在…...
Git推送本地文件到仓库
1. 在 Gitee 上创建一个新的仓库: 登录到 Gitee(https://gitee.com)账号。在 Gitee 主页上选择 "新建仓库" 或类似选项。输入仓库名称和描述,并选择其他相关选项(如公开/私有)。确认创建仓库 …...
Django笔记(一):环境部署
目录 Python虚拟环境 安装virtualenv 创建环境 激活环境 关闭: 安装Django VSCode配置 Python插件 Django插件 解释器选择 Django部署 创建项目 创建app 创建模板 编写视图 编写路由 启动服务器 访问 Python虚拟环境 安装virtualenv pip i…...
用Pytorch实现线性回归模型
目录 回顾Pytorch实现步骤1. 准备数据2. 设计模型class LinearModel代码 3. 构造损失函数和优化器4. 训练过程5. 输出和测试完整代码 练习 回顾 前面已经学习过线性模型相关的内容,实现线性模型的过程并没有使用到Pytorch。 这节课主要是利用Pytorch实现线性模型。…...
WordPress模板层次与常用模板函数
首页: home.php index.php 文章页: single-{post_type}.php – 如果文章类型是videos(即视频),WordPress就会去查找single-videos.php(WordPress 3.0及以上版本支持) single.php index.php 页面: 自定义模板 – 在WordPre…...
HarmonyOS应用开发者高级认证试题库(鸿蒙)
目录 考试链接: 流程: 选择: 判断 单选 多选 考试链接: 华为开发者学堂华为开发者学堂https://developer.huawei.com/consumer/cn/training/dev-certification/a617e0d3bc144624864a04edb951f6c4 流程: 先进行…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
