当前位置: 首页 > news >正文

李沐深度学习-线性回归从零开始

# 核心Tensor,autograd
import torch
from IPython import display
import numpy as np
import random
from matplotlib import pyplot as pltimport syssys.path.append('路径')
from d2lzh_pytorch import *'''
backward()函数:一次小批量执行完在进行反向传播
线性回归模型步骤;1.数据处理2.模型定义:根据矩阵形式运算,模型可以一次计算多个样本,比如X:1000x2, w:2x1  则模型可以一次计算1000个样本3.损失函数:4.优化算法:sgd则是小批量中每个样本loss运行完后,对应参数的梯度进行了累加,得到一个小批量的代表梯度 w1,w2,b然后将每个小批量的参数梯度进行梯度下降5.模型预测
'''
# ------------------------------------------------------------------------
# 生成数据集
'''
样本X=1000,特征=2,w=2,-3.4;b=4.2   随机噪声ξ     y=Xw+b+ξ
噪声服从均值为0,标准差为0.01的正态分布  噪声代表了数据集中无意义的干扰
'''
num_inputs = 2  # 特征数
num_examples = 1000  # 样本数量
true_w = [2, -3.4]  # w
true_b = 4.3  # b
# 生成所有包含特征  1000x2的样本 向量
features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
# 下列运算属于矢量运算  预测y 表达式  是个向量,1000x1
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 添加符合正态分布的噪声
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)# set_figsize()
# plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
# plt.savefig('/home/eilab2023/yml/project/limu/picture/picture.png')# 读取数据集# ---------------------------------------------------------------------------------------------# ---------------------------------------------------------------------------------------------
# 定义模型# ---------------------------------------------------------------------------------------------# 损失函数
# ---------------------------------------------------------------------------------------------# 优化算法
# ---------------------------------------------------------------------------------------------# 模型训练
# ---------------------------------------------------------------------------------------------
lr = 0.03
num_epoch = 3
net = linreg
loss = squared_loss
'''
每次返回一个batch-size大小随机样本的特征和标签
'''
batch_size = 10
# 初始化模型参数 w b  都是列矩阵  上面的是确定的公式,x,w,b都是确定的,label确定。这里的参数是初始化模拟的
# 一般是,X确定,label确定,然后初始化w,b,在模型训练寻找最优解,这里提前确定是为了方便
w = torch.tensor((np.random.normal(0, 0.01, (num_inputs, 1))), dtype=torch.float32)
b = torch.tensor(1, dtype=torch.float32)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
# 外部定义了变量w后若在方法内有改变w,则该变量值会随着改变for epoch in range(num_epoch):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y).sum()  # 小批量的损失计算完l.backward()  # 计算小批量的样本参数梯度,这里每个样本的参数梯度会自动累加sgd([w, b], lr, batch_size)  # 一个小批量出一个w,b   梯度下降算法# 一个小批量的参数更新后就要对参数的梯度进行清零操作w.grad.data.zero_()b.grad.data.zero_()train_l = loss(net(features, w, b), labels)  # 这里的w,b是一轮所有的批量更新完成之后得到的最新的值,然后用于所有的样本进行损失计算print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))  # 因为loss是一个1000x1的一个张量

相关文章:

李沐深度学习-线性回归从零开始

# 核心Tensor,autograd import torch from IPython import display import numpy as np import random from matplotlib import pyplot as pltimport syssys.path.append(路径) from d2lzh_pytorch import * backward()函数:一次小批量执行完在进行反向传播 线性回归…...

CentOS 8.5 安装图解

特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...

好用的流程图工具

分享工作中常用的装逼工具 目前市面上的流程图或者思维导图工具挺多的,但是有的会限制使用数量或者收费,典型的有processon、Xmind,推荐今天Mermaid(官网)。 快速上手 中文教程:Mermaid 初学者用户指南 | Mermaid 中文网。我们选择…...

数据结构:链式栈

stack.h /* * 文件名称&#xff1a;stack.h * 创 建 者&#xff1a;cxy * 创建日期&#xff1a;2024年01月18日 * 描 述&#xff1a; */ #ifndef _STACK_H #define _STACK_H#include <stdio.h> #include <stdlib.h>typedef struct stack{int data…...

openssl3.2 - 官方demo学习 - mac - gmac.c

文章目录 openssl3.2 - 官方demo学习 - mac - gmac.c概述笔记END openssl3.2 - 官方demo学习 - mac - gmac.c 概述 使用GMAC算法, 设置参数(指定加密算法 e.g. AES-128-GCM, 设置iv) 用key执行初始化, 然后对明文生成MAC数据 官方注释给出建议, key, iv最好不要硬编码出现在程…...

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍。 Hugging Face是一家开源模型库公司。 2023年5月10日&#xff0c;Hugging Face宣布C轮1亿美元融资&#xff0c;由Lux Capital领投&#xff0c;红杉资本、Coatue、Betaworks、NBA球星Kevin Durant等跟投…...

python的tabulate包在命令行下输出表格不对齐

用tabulate可以在命令行下输出表格。 from tabulate import tabulate# 定义表头 headers [列1, 列2, 列3]# 每行的内容 rows [] rows.append((张三,数学,英语)) rows.append((李四,信息科技,数学))# 使用 tabulate 函数生成表格 output tabulate(rows, headersheaders, tab…...

LLM之幻觉(二):大语言模型LLM幻觉缓减技术综述

LLM幻觉缓减技术分为两大主流&#xff0c;梯度方法和非梯度方法。梯度方法是指对基本LLM进行微调&#xff1b;而非梯度方法主要是在推理时使用Prompt工程技术。LLM幻觉缓减技术&#xff0c;如下图所示&#xff1a; LLM幻觉缓减技术值得注意的是&#xff1a; 检索增强生成&…...

C# 使用多线程,关闭窗体时,退出所有线程

this.Close(); 只是关闭当前窗口&#xff0c;若不是主窗体的话&#xff0c;是无法退出程序的&#xff0c;另外若有托管线程&#xff08;非主线程&#xff09;&#xff0c;也无法干净地退出&#xff1b;Application.Exit(); 强制所有消息中止&#xff0c;退出所有的窗体&…...

数据结构实验6:图的应用

目录 一、实验目的 1. 邻接矩阵 2. 邻接矩阵表示图的结构定义 3. 图的初始化 4. 边的添加 5. 边的删除 6. Dijkstra算法 三、实验内容 实验内容 代码 截图 分析 一、实验目的 1&#xff0e;掌握图的邻接矩阵的存储定义&#xff1b; 2&#xff0e;掌握图的最短路径…...

Spring Boot整合JUnit

引言 测试是软件开发过程中不可或缺的一环&#xff0c;而JUnit作为Java生态中最流行的测试框架之一&#xff0c;与Spring Boot的整合为开发者提供了一套强大的测试工具。本文将讨论Spring Boot整合JUnit的技术细节、最佳实践以及测试驱动开发&#xff08;TDD&#xff09;的优雅…...

uniapp写小程序实现清除缓存(存储/获取/移除/清空)

在uni-app中&#xff0c;可以使用uni.setStorageSync和uni.getStorageSync来进行数据的存储和获取。而移除缓存数据可以使用uni.removeStorageSync&#xff0c;清空缓存数据可以使用uni.clearStorageSync。 以下是使用示例&#xff1a; 存储数据&#xff1a; uni.setStorage…...

js菜单隐藏显示

1、树状结构对应的表: 2、生成menulist的SQL语句 select {"id":"MenuID","parent":"ParentID","FirstLvMenu":"FirstLvMenu", "text":"MenuName","url":"MenuUrl",&quo…...

学习Spring的第五天(Bean的依赖注入)

Bean的依赖注入有两种方式: 一 . 常规Bean的依赖注入 很简单,不过多赘述了,注意ref: 是构造函数或set方法的参数,一般为对象, value: 是构造函数或set方法的参数,一般为值. 看下图 1.1 下面来演示一下集合数据类型的关于Bean的依赖注入 1.1.1这是List的注入(演示泛型为Strin…...

GAN在图像数据增强中的应用

在图像数据增强领域&#xff0c;生成对抗网络&#xff08;GAN&#xff09;的应用主要集中在通过生成新的图像数据来扩展现有数据集的规模和多样性。这种方法特别适用于训练数据有限的情况&#xff0c;可以通过增加数据的多样性来提高机器学习模型的性能和泛化能力。 以下是GAN在…...

Git推送本地文件到仓库

1. 在 Gitee 上创建一个新的仓库&#xff1a; 登录到 Gitee&#xff08;https://gitee.com&#xff09;账号。在 Gitee 主页上选择 "新建仓库" 或类似选项。输入仓库名称和描述&#xff0c;并选择其他相关选项&#xff08;如公开/私有&#xff09;。确认创建仓库 …...

Django笔记(一):环境部署

目录 Python虚拟环境 安装virtualenv 创建环境 激活环境 关闭&#xff1a; 安装Django VSCode配置 Python插件 Django插件 解释器选择 Django部署 创建项目 创建app 创建模板 编写视图 编写路由 启动服务器 访问 Python虚拟环境 安装virtualenv pip i…...

用Pytorch实现线性回归模型

目录 回顾Pytorch实现步骤1. 准备数据2. 设计模型class LinearModel代码 3. 构造损失函数和优化器4. 训练过程5. 输出和测试完整代码 练习 回顾 前面已经学习过线性模型相关的内容&#xff0c;实现线性模型的过程并没有使用到Pytorch。 这节课主要是利用Pytorch实现线性模型。…...

WordPress模板层次与常用模板函数

首页&#xff1a; home.php index.php 文章页&#xff1a; single-{post_type}.php – 如果文章类型是videos(即视频)&#xff0c;WordPress就会去查找single-videos.php(WordPress 3.0及以上版本支持) single.php index.php 页面&#xff1a; 自定义模板 – 在WordPre…...

HarmonyOS应用开发者高级认证试题库(鸿蒙)

目录 考试链接&#xff1a; 流程&#xff1a; 选择&#xff1a; 判断 单选 多选 考试链接&#xff1a; 华为开发者学堂华为开发者学堂https://developer.huawei.com/consumer/cn/training/dev-certification/a617e0d3bc144624864a04edb951f6c4 流程&#xff1a; 先进行…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...