当前位置: 首页 > news >正文

李沐深度学习-线性回归从零开始

# 核心Tensor,autograd
import torch
from IPython import display
import numpy as np
import random
from matplotlib import pyplot as pltimport syssys.path.append('路径')
from d2lzh_pytorch import *'''
backward()函数:一次小批量执行完在进行反向传播
线性回归模型步骤;1.数据处理2.模型定义:根据矩阵形式运算,模型可以一次计算多个样本,比如X:1000x2, w:2x1  则模型可以一次计算1000个样本3.损失函数:4.优化算法:sgd则是小批量中每个样本loss运行完后,对应参数的梯度进行了累加,得到一个小批量的代表梯度 w1,w2,b然后将每个小批量的参数梯度进行梯度下降5.模型预测
'''
# ------------------------------------------------------------------------
# 生成数据集
'''
样本X=1000,特征=2,w=2,-3.4;b=4.2   随机噪声ξ     y=Xw+b+ξ
噪声服从均值为0,标准差为0.01的正态分布  噪声代表了数据集中无意义的干扰
'''
num_inputs = 2  # 特征数
num_examples = 1000  # 样本数量
true_w = [2, -3.4]  # w
true_b = 4.3  # b
# 生成所有包含特征  1000x2的样本 向量
features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
# 下列运算属于矢量运算  预测y 表达式  是个向量,1000x1
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 添加符合正态分布的噪声
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)# set_figsize()
# plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
# plt.savefig('/home/eilab2023/yml/project/limu/picture/picture.png')# 读取数据集# ---------------------------------------------------------------------------------------------# ---------------------------------------------------------------------------------------------
# 定义模型# ---------------------------------------------------------------------------------------------# 损失函数
# ---------------------------------------------------------------------------------------------# 优化算法
# ---------------------------------------------------------------------------------------------# 模型训练
# ---------------------------------------------------------------------------------------------
lr = 0.03
num_epoch = 3
net = linreg
loss = squared_loss
'''
每次返回一个batch-size大小随机样本的特征和标签
'''
batch_size = 10
# 初始化模型参数 w b  都是列矩阵  上面的是确定的公式,x,w,b都是确定的,label确定。这里的参数是初始化模拟的
# 一般是,X确定,label确定,然后初始化w,b,在模型训练寻找最优解,这里提前确定是为了方便
w = torch.tensor((np.random.normal(0, 0.01, (num_inputs, 1))), dtype=torch.float32)
b = torch.tensor(1, dtype=torch.float32)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
# 外部定义了变量w后若在方法内有改变w,则该变量值会随着改变for epoch in range(num_epoch):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y).sum()  # 小批量的损失计算完l.backward()  # 计算小批量的样本参数梯度,这里每个样本的参数梯度会自动累加sgd([w, b], lr, batch_size)  # 一个小批量出一个w,b   梯度下降算法# 一个小批量的参数更新后就要对参数的梯度进行清零操作w.grad.data.zero_()b.grad.data.zero_()train_l = loss(net(features, w, b), labels)  # 这里的w,b是一轮所有的批量更新完成之后得到的最新的值,然后用于所有的样本进行损失计算print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))  # 因为loss是一个1000x1的一个张量

相关文章:

李沐深度学习-线性回归从零开始

# 核心Tensor,autograd import torch from IPython import display import numpy as np import random from matplotlib import pyplot as pltimport syssys.path.append(路径) from d2lzh_pytorch import * backward()函数:一次小批量执行完在进行反向传播 线性回归…...

CentOS 8.5 安装图解

特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...

好用的流程图工具

分享工作中常用的装逼工具 目前市面上的流程图或者思维导图工具挺多的,但是有的会限制使用数量或者收费,典型的有processon、Xmind,推荐今天Mermaid(官网)。 快速上手 中文教程:Mermaid 初学者用户指南 | Mermaid 中文网。我们选择…...

数据结构:链式栈

stack.h /* * 文件名称&#xff1a;stack.h * 创 建 者&#xff1a;cxy * 创建日期&#xff1a;2024年01月18日 * 描 述&#xff1a; */ #ifndef _STACK_H #define _STACK_H#include <stdio.h> #include <stdlib.h>typedef struct stack{int data…...

openssl3.2 - 官方demo学习 - mac - gmac.c

文章目录 openssl3.2 - 官方demo学习 - mac - gmac.c概述笔记END openssl3.2 - 官方demo学习 - mac - gmac.c 概述 使用GMAC算法, 设置参数(指定加密算法 e.g. AES-128-GCM, 设置iv) 用key执行初始化, 然后对明文生成MAC数据 官方注释给出建议, key, iv最好不要硬编码出现在程…...

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍。 Hugging Face是一家开源模型库公司。 2023年5月10日&#xff0c;Hugging Face宣布C轮1亿美元融资&#xff0c;由Lux Capital领投&#xff0c;红杉资本、Coatue、Betaworks、NBA球星Kevin Durant等跟投…...

python的tabulate包在命令行下输出表格不对齐

用tabulate可以在命令行下输出表格。 from tabulate import tabulate# 定义表头 headers [列1, 列2, 列3]# 每行的内容 rows [] rows.append((张三,数学,英语)) rows.append((李四,信息科技,数学))# 使用 tabulate 函数生成表格 output tabulate(rows, headersheaders, tab…...

LLM之幻觉(二):大语言模型LLM幻觉缓减技术综述

LLM幻觉缓减技术分为两大主流&#xff0c;梯度方法和非梯度方法。梯度方法是指对基本LLM进行微调&#xff1b;而非梯度方法主要是在推理时使用Prompt工程技术。LLM幻觉缓减技术&#xff0c;如下图所示&#xff1a; LLM幻觉缓减技术值得注意的是&#xff1a; 检索增强生成&…...

C# 使用多线程,关闭窗体时,退出所有线程

this.Close(); 只是关闭当前窗口&#xff0c;若不是主窗体的话&#xff0c;是无法退出程序的&#xff0c;另外若有托管线程&#xff08;非主线程&#xff09;&#xff0c;也无法干净地退出&#xff1b;Application.Exit(); 强制所有消息中止&#xff0c;退出所有的窗体&…...

数据结构实验6:图的应用

目录 一、实验目的 1. 邻接矩阵 2. 邻接矩阵表示图的结构定义 3. 图的初始化 4. 边的添加 5. 边的删除 6. Dijkstra算法 三、实验内容 实验内容 代码 截图 分析 一、实验目的 1&#xff0e;掌握图的邻接矩阵的存储定义&#xff1b; 2&#xff0e;掌握图的最短路径…...

Spring Boot整合JUnit

引言 测试是软件开发过程中不可或缺的一环&#xff0c;而JUnit作为Java生态中最流行的测试框架之一&#xff0c;与Spring Boot的整合为开发者提供了一套强大的测试工具。本文将讨论Spring Boot整合JUnit的技术细节、最佳实践以及测试驱动开发&#xff08;TDD&#xff09;的优雅…...

uniapp写小程序实现清除缓存(存储/获取/移除/清空)

在uni-app中&#xff0c;可以使用uni.setStorageSync和uni.getStorageSync来进行数据的存储和获取。而移除缓存数据可以使用uni.removeStorageSync&#xff0c;清空缓存数据可以使用uni.clearStorageSync。 以下是使用示例&#xff1a; 存储数据&#xff1a; uni.setStorage…...

js菜单隐藏显示

1、树状结构对应的表: 2、生成menulist的SQL语句 select {"id":"MenuID","parent":"ParentID","FirstLvMenu":"FirstLvMenu", "text":"MenuName","url":"MenuUrl",&quo…...

学习Spring的第五天(Bean的依赖注入)

Bean的依赖注入有两种方式: 一 . 常规Bean的依赖注入 很简单,不过多赘述了,注意ref: 是构造函数或set方法的参数,一般为对象, value: 是构造函数或set方法的参数,一般为值. 看下图 1.1 下面来演示一下集合数据类型的关于Bean的依赖注入 1.1.1这是List的注入(演示泛型为Strin…...

GAN在图像数据增强中的应用

在图像数据增强领域&#xff0c;生成对抗网络&#xff08;GAN&#xff09;的应用主要集中在通过生成新的图像数据来扩展现有数据集的规模和多样性。这种方法特别适用于训练数据有限的情况&#xff0c;可以通过增加数据的多样性来提高机器学习模型的性能和泛化能力。 以下是GAN在…...

Git推送本地文件到仓库

1. 在 Gitee 上创建一个新的仓库&#xff1a; 登录到 Gitee&#xff08;https://gitee.com&#xff09;账号。在 Gitee 主页上选择 "新建仓库" 或类似选项。输入仓库名称和描述&#xff0c;并选择其他相关选项&#xff08;如公开/私有&#xff09;。确认创建仓库 …...

Django笔记(一):环境部署

目录 Python虚拟环境 安装virtualenv 创建环境 激活环境 关闭&#xff1a; 安装Django VSCode配置 Python插件 Django插件 解释器选择 Django部署 创建项目 创建app 创建模板 编写视图 编写路由 启动服务器 访问 Python虚拟环境 安装virtualenv pip i…...

用Pytorch实现线性回归模型

目录 回顾Pytorch实现步骤1. 准备数据2. 设计模型class LinearModel代码 3. 构造损失函数和优化器4. 训练过程5. 输出和测试完整代码 练习 回顾 前面已经学习过线性模型相关的内容&#xff0c;实现线性模型的过程并没有使用到Pytorch。 这节课主要是利用Pytorch实现线性模型。…...

WordPress模板层次与常用模板函数

首页&#xff1a; home.php index.php 文章页&#xff1a; single-{post_type}.php – 如果文章类型是videos(即视频)&#xff0c;WordPress就会去查找single-videos.php(WordPress 3.0及以上版本支持) single.php index.php 页面&#xff1a; 自定义模板 – 在WordPre…...

HarmonyOS应用开发者高级认证试题库(鸿蒙)

目录 考试链接&#xff1a; 流程&#xff1a; 选择&#xff1a; 判断 单选 多选 考试链接&#xff1a; 华为开发者学堂华为开发者学堂https://developer.huawei.com/consumer/cn/training/dev-certification/a617e0d3bc144624864a04edb951f6c4 流程&#xff1a; 先进行…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...