当前位置: 首页 > news >正文

冻结Prompt微调LM: T5 PET (a)

T5

  • paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

  • Task: Everything

  • Prompt: 前缀式人工prompt

  • Model: Encoder-Decoder

  • Take Away: 加入前缀Prompt,所有NLP任务都可以转化为文本生成任务

img

T5论文的初衷如标题所言,是为了全面公平的对比不同预训练和迁移策略的贡献和效果,避免在A模型上效果不好的预训练目标在B上可能效果更优的情况,对比项包括

  • 预训练目标:语言模型,乱序还原,MLM(不同的掩码率),Span掩码, etc

  • 预训练数据:构建C4数据集,从C4抽取不同领域语料来训练

  • 模型架构: Encoder-Decoder,Decoder Only,Encoder Only

  • 迁移策略:逐步解冻,全量微调,局部微调

  • 其他:多任务预训练,模型大小

说句题外话,再看论文结果发现Encoder-Decoder的模型结果+SpanMLM损失函数效果最好。不知道这是否是谷歌押注T5,而没有像OpenAI一样选择Deocder结构的原因。

具体对比结果这里不细说,本文只关注T5为了公平对比以上差异,提出的Text2Text的通用建模框架:用相同的模型,相同的预训练,相同的损失函数和解码方式,把文本分类,摘要,翻译,QA都转化成了生成任务,而转化的方式就是通过加入前缀prompt。

针对不同的下游微调任务,我们看下T5提出的Text2Text是如何构建prompt模板的

  1. WMT英语到德语的翻译任务,输入是'translate English to German:'+input, 输出是翻译结果

  2. CNN Mail摘要任务: 文本摘要任务,输入是‘Summarize:'+input,输出是摘要

  3. MNLI任务:输入是'mnli hypothesis:'+假设+'premise:'+叙述,输出是contradiction, entailment,neutral

  4. STS文本相似任务:输入是'stsb sentence1:'+input1+‘sentence2:’+input2, 输出是1~5的打分(离散化)

  5. 问答SQuAD任务:输入是'question:'+提问+ 'context:'+上下文,输出是答案

不难发现在T5的时代,prompt模板的构建还比较粗糙,更多是单纯的任务名称+任务类型来区分不同的NLP任务,只是让模型在解码时多一层条件概率,既给定不同prompt前缀在解码时采用不同的条件概率(attention)。并没有太多从语义和上下文关联的角度去进行prompt模板的构建,我猜这是T5在论文中提到他们尝试了不同的prompt模板发现效果影响有限的原因(哈哈因为都不太好所以没啥差异),不不能否定T5在通用LM上做出的贡献~

PET-TC(a)

  • paper a: 2020.1 Exploiting Cloze Questions for Few Shot Text Classification and Natural

  • prompt: 单字完形填空式人工Prompt

  • Task: Text Classification

  • Model: Roberta-large, XLM-R

  • Take Away: 加入完形填空式Prompt把文本分类任务转化成单字MLM

img

和第一章的LAMA相似,PET-TC也是把输入映射成完形填空式的prompt模板,对掩码词进行预测作为分类标签。不过PET没有直接使用prompt,而是用了半监督的方案。用多个prompt模板微调模型后,对大规模无监督数据进行预测,然后在伪标签上进行常规的模型微调,哈哈绕了一个圈最后还是输出的常规微调的模型。我大胆猜测作者很看好prompt范式在微调时引入的前置语义信息,以及无额外参数的设定,但是对不同prompt和answer模板带来的不稳定性感到头疼,于是搞出这么个折中的方法~

prompt & Answer Engineer

PET针对每个数据集人工设计了prompt模板和Answer词对标签的映射。针对单双文本输入分别举两个例子,以下a,b为原始输入文本,'_'位置为MASK词

  • 单输入:Yelp评论1~5星打分,标签词分别为terrible, bad,okay,good,great

img

  • 双输入:AG's News新闻四分类问题, 标签词分别为分类名称Worlds,Sports, Business, Science/Tech,

img

可以看出作者构建prompt模板的思路是尽可能还原文本所在的上下文场景,Answer词的选取是一对一的构建模式,每个label只选取一个词来表示。

固定prompt微调LM

完形填空式的prompt模板在微调时的优势,我认为主要有以下三点

  • 没有额外参数的引入,常规微调需要引入hidden_size * label_size的额外参数(classify head)作为每个标签对应的空间表征,这部分需要针对下游任务重头学习。而完形填空的token是在原始vocab中的,于是只需要调整标签词的预训练表征让它在label上线性可分即可

  • 前置语义信息的引入,因为标签词的选取本身符合label的原始语义,例如以上YELP评论打分中的5个形容词本身就是隐含了评论质量信息的,所以会引入部分前置信息,避免重头学习,这一点和MRC有些相似

  • 预训练和微调的一致性高,都是解决完形填空问题,学习目标一致

微调的损失函数是交叉熵,作者没有引入额外参数,而是把MASK位置上模型的预估logits在label上归一化来得到分类预测。例如上面的AG新闻分类任务,先得到MASK位置worlds,sports,business,science这四个词的预测logits,然后归一化得到预估概率,再和分类标签计算交叉熵。

为了避免灾难遗忘作者在下游任务微调时加入了预训练的MLM任务,于是微调的损失函数如下

半监督+蒸馏

这部分的设计可以和prompt的部分分开来看,是一个半监督方案。以上每个任务对应的多个prompt模板,分别固定prompt微调LM得到一版模型,然后在大量的未标注样本上进行预测,再对多个模型的预测值进行加权得到伪标签。

最终在为标签上使用常规的微调方案(加classifier head),训练模型作为输出,这一步类比知识蒸馏。所以PET最后输出的还是常规的监督微调模型,Prompt只是被当做了一种半监督方案。效果上在小样本的设定上比直接使用监督微调都有一定的效果提升。

img

作者还做了iPET对以上过程通过迭代逐步扩大数据集,提高伪标签准确率的方案,不过这么麻烦的实现一点都不适合我这种懒人,哈哈就不细说了~

针对PET有几点疑问

  • 完形填空类的prompt,在微调过程中可能的灾难遗忘,是否因为对label词的微调偏离了词在原始文本中语义表征,以及和其他词的相对位置

  • prompt模板差异带来的效果差异尚未解决,人工构建的prompt模板不一定是最优的

  • Answer词单token,以及和label一一对应的设定,限制性较强。这部分在后面的续作里作者做了改良

后面介绍的几个模型,大多是基于PET上述问题的改良~

相关文章:

冻结Prompt微调LM: T5 PET (a)

T5 paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Task: Everything Prompt: 前缀式人工prompt Model: Encoder-Decoder Take Away: 加入前缀Prompt,所有NLP任务都可以转化为文本生成任务 T5论文的初衷如…...

119 BFS和DFS解二叉树的所有路径

问题描述:给定一个二叉树,返回所有从根节点到叶子节点的路径。说明:叶子节点是指没有子节点的节点。 DFS求解:定义一个全局的链表,用来装所有的结果,通过DFS遍历,一旦遍历到当前节点没有子节点…...

SpringBoot缓存相关注解的使用

CacheConfig:主要用于配置该类中会用到的一些共用的缓存配置 Cacheable:主要方法的返回值将被加入缓存。在查询时,会先从缓存中获取,若不存在才再发起对数据库的访问 CachePut:主要用于数据新增和修改操作 CacheEvi…...

SpiderFlow爬虫平台漏洞利用分析(CVE-2024-0195)

1. 漏洞介绍 SpiderFlow爬虫平台项目中spider-flow-web\src\main\java\org\spiderflow\controller\FunctionController.java文件的FunctionService.saveFunction函数调用了saveFunction函数,该调用了自定义函数validScript,该函数中用户能够控制 functi…...

计算机网络-甘晴void学习笔记

计算机网络 计科210X 甘晴void 202108010XXX 文章目录 计算机网络期中复习1计算机网络和因特网1.1 因特网1.2 网络边缘1.3 网络核心1.4 分组交换的时延/丢包和吞吐量1.5 协议层次与服务模型 2 应用层原理2.1 应用层协议原理2.2 Web和Http2.3 因特网中的电子邮件2.4 DNS&#x…...

vue中使用echarts实现省市地图绘制,根据数据在地图上显示柱状图信息,增加涟漪特效动画效果

文章目录 一、实现效果二、实现方法1、安装echarts插件2、获取省市json数据3、本例中data 数据4、吉林省地图的绘制5、柱状图样式6、设置柱状底部涟漪特效样式7、数据处理 三、示例代码已上传,去顶部可下载四、效果展示 一、实现效果 使用echarts实现省市地图绘制&…...

Android aar包集成与报错

Android Studio引用AAR的方式,分为gradle7.0之前与7.0之后 一、集成步骤 方法一: 1.将对应的xxx.aar包复制到项目的libs目录下(xxx代表需要引入的aar包名称) 2.然后在模块的build.gradle文件中配置implementation files(libs/lib…...

CentOS 7.9 安装图解

特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...

Gitea Webhook报错 webhook.ALLOWED_HOST_LIST setting

Gitea Webhook报错 webhook.ALLOWED_HOST_LIST setting 登录到Gitea中,编辑app.ini vi /data/gitea/conf/app.ini [webhook] ALLOWED_HOST_LIST 你的IP地址示例 [webhook] ALLOWED_HOST_LIST 192.168.3.98...

SQL 最大连续合格次数 最大连胜记录次数 最大连败记录次数

有这样一个问题,工厂中要统计某个供应商送货检验的情况,依照其连续合格次数,决定是否免检,不使用游标或者循环,如何写这个sql。 此情景也可以用于统计连胜记录等 先要学习一下 窗函数LAG,指的是按分组和排…...

着色器语言GLSL学习

1 初步尝试 import { Scene, WebGLRenderer, OrthographicCamera, PlaneGeometry, ShaderMateria } from three.jsconst scene new Scene() const camera new OrthographicCamera(-1,1,1,-1,0.1, 10)const renderer new WebGLRenderer() renderer.setSize(window.innerWidt…...

C#: form 窗体的各种操作

说明:记录 C# form 窗体的各种操作 1. C# form 窗体居中显示 // 获取屏幕的宽度和高度 int screenWidth Screen.PrimaryScreen.Bounds.Width; int screenHeight Screen.PrimaryScreen.Bounds.Height;// 设置窗体的位置 this.StartPosition FormStartPosition.M…...

“尔滨”宠粉再升级!百亿像素VR冰雪盛宴

1月10日,由哈尔滨市委网信办、哈尔滨日报社主办,冰城客户端、哈尔滨新闻网承办的“激情迎亚冬,冰雪暖世界——2024年哈尔滨冰雪乐园”VR沉浸式体验产品正式上线。 如果你还没去过最近爆火出圈的“尔滨” ❄️这份哈尔滨冰雪景点VR❄️ 为你…...

redis原理(四)redis命令

目录 一、字符串命令: 二、列表命令: 三、集合命令: 四、散列命令: 五、有序集合命令: 六、redis发布与订阅命令: 七、事务命令 八、其他命令 1、排序:SORT 2、键的过期时间&#xff…...

FairGuard游戏安全2023年度报告

导 读:2023年,游戏行业摆脱了疫情带来诸多负面影响,国内游戏市场收入与用户规模双双实现突破,迎来了历史新高点。但游戏黑灰产规模也在迅速扩大,不少游戏饱受其侵扰,游戏厂商愈发重视游戏安全问题。 为帮助…...

进阶Docker4:网桥模式、主机模式与自定义网络

目录 网络相关 子网掩码 网关 规则 docke网络配置 bridge模式 host模式 创建自定义网络(自定义IP) 网络相关 IP 子网掩码 网关 DNS 端口号 子网掩码 互联网是由许多小型网络构成的,每个网络上都有许多主机,这样便构成了一个有层次的结构。 IP 地…...

Qt 状态机框架:The State Machine Framework (二)

传送门: Qt 状态机框架:The State Machine Framework (一) Qt 状态机框架:The State Machine Framework (二) 1、利用并行态避免态的组合爆炸 假设您想在单个状态机中对汽车的一组互斥属性进行建模。假设我们感兴趣的属性是干净与肮脏,以及移动与不移动。需要四个相互排斥的…...

【Redis】更改redis中的value值

今天继续进步一点点~~ 背景:今天有个前端的同事问我,能不能在Redis中他本人登录公众号的 sessionID 加上一列openID 于是我上网查了一堆在Redis里面的命令,以及不同的客户端怎么输入命令,但是后来问了下同事,他就给我…...

数据结构Java版(2)——栈Stack

一、概念 栈也是一种线性数据结构,最主要的特点是入栈顺序和出栈顺序是相反的,操作时只能从栈顶进行操作,在Java中给我们提供了一个泛型栈——Stack,其中最常用的方法有: void push(E):进栈E pop():退栈E peek():查看…...

tcpdump 用法

tcpdump 是一个用于捕获和分析网络数据包的命令行工具。它可以在网络上截取数据包,并以可读的格式输出,方便进行网络故障排除和协议分析 tcpdump -i interface # 指定网络接口: tcpdump host target_host # 过滤特定主机的流量 tcpdump port…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...