Android onLayout布局流程解析
组件布局流程结论
1.)layout流程始于ViewRootImpl的performLayout()方法,该方法会调用根View(DecorView)的layout()方法进行布局,因为DecorView是ViewGroup(FrameLayout),所以layout流程来到了ViewGroup(其实调用的是父类View类)的layout()方法
- )layout()方法负责组件自身的布局,会存储mLeft、mTop、mRight、mBottom 四个值来存储自身的位置,如果布局变化,还会回调onSizeChanged()方法通知我们布局发生了变化。最后layout()方法还会调用onLayout()方法进行子组件的布局。
- )View类因为没有子组件,所以View类的onLayout()方法是个空实现,ViewGroup类因为有子组件,但我们自定义的ViewGroup类都有自己的布局规则,所以ViewGroup类的onLayout()方法是个抽象方法,需要子类去实现,所以我们直接继承ViewGroup类一定需要重写onLayout()方法。
- )实现ViewGroup的onLayout()方法,我们需要循环所有的子组件,根据我们自己的布局规则,确定他们的位置,然后调用子组件的layout()方法 ,让子组件存储自身的位置,如果子组件是View,则没有后续的布局流程,如果子组件还是ViewGroup,则会重复上述步骤,直到完成所有的布局流程。
View的layout方法
这是一个被final修饰的方法,意味着无法被子类重写。但是内部事件还是调用了View中的layout方法
View中的onLayout是一个空实现的方法,通过layout方法将新的left、top、right、bottom传给onLayout。 官方注释在此视图应该时从布局调用(layout方法执行),此视图(onLayout方法执行)给每个孩子分配一个大小和位置。子类的派生类应该重写此方法并在每个子View上调用布局(layout方法)。 View的子类当然是ViewGroup了,所以ViewGroup更加像是一个View的管理器,用来实现对子View的大小和位置变化进行控制。简单来说View会通过onLayout方法进行确认View的显示位置。
ViewGroup中的onLayout方法是一个抽象方法,所以子类必须实现。并且调用View中的layout方法来确认View的位置和大小。
在layout方法中mLeft、mTop、mRight、mBottom这四个值是用来进行对View位置的摆放和大小的限制,是相对于父控件而言的。
如图白色区域是父View,黑色区域为子View。
针对getWidth()和getMeasuredWidth()进行分析 ,先看下区别
mMeasuredWidth这个值之前在 小试牛刀-onMeasure方法 中介绍过是View的实际大小宽对应的值是mMeasuredWidth,而mMeasuredWidth是通过setMeasuredDimension方法设置进来的。所以在measure方法结束后mMeasuredWidth才会有值,此时调用getMeasuredWidth可以获取对应的值。
在getWidth()中是通过mRight - mLeft的计算返回的结果。而mRight和mLeft这两个值,上面有介绍是通过layout传递过来的。
Layout(源码分析):
Layout的作用就是为整个View树计算实际的位置,而通过刚才对View树的介绍知道,想计算整个View树的位置,就需要递归的去计算每一个子视图的位置(Measure同理)。
而确定这个位置很简单,只需要mLeft,mTop,mRight,mBottom四个值(注意:这4个值是子View相对于父View的值,下面会详细介绍)。
在代码中如何设置这4个值呢? 首先,无论是系统提供的LinearLayout还是我们自定义的View视图,他都需要继承自ViewGroup类,之后必须要做的就是重写onLayout方法(因为在onLayout在ViewGroup中被定义为抽象方法)。
ViewGroup-onlayout:
@Override
protected abstract void onLayout(boolean changed, int l, int t, int r, int b); 12
onLayout被定义为抽象方法,所以在继承ViewGroup时必须要重写该方法(onMeasure不需要)。另外这个方法也被override标注,所以也是重写的方法,他重写的是其父类view中的onLayout方法。
View-onlayout:
/** * 当这个view和其子view被分配一个大小和位置时,被layout调用。 * @param changed 当前View的大小和位置改变了 * @param left 左部位置(相对于父视图) * @param top 顶部位置(相对于父视图) * @param right 右部位置(相对于父视图) * @param bottom 底部位置(相对于父视图) */
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {} 123456789
注解说:当这个view和其子view被分配一个大小和位置时,被layout调用。所以我们去看看layout中做了什么。(注解没有完全按照英文翻译,并且有省略)
View-layout:
/** * 给View和其所有子View分配大小和位置 * * 这是布局的第二个阶段(第一个阶段是测量)。在这个阶段中,每个父视图需要去调用layout去为他所有的子视图确定位置 * 派生的子类不应该重写layout方法,应该重写onLayout方法,在onlayout方法中应该去调用每一个view的layout */
public void layout(int l, int t, int r, int b) { // 将当前视图的左上右下记录为old值(参数中传入的为新的l,t,r,b值) int oldL = mLeft; int oldT = mTop; int oldB = mBottom; int oldR = mRight;
// setFrame方法的作用就是将新传入的ltrb属性赋值给View,然后判断当前View大小和位置是否发生了变化并返回 boolean changed = setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) { // 调用onLayout回调方法,具体实现由重写了onLayout方法的ViewGroup的子类去实现(后面详细说明) onLayout(changed, l, t, r, b); mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
// 调用所有重写了onLayoutChange监听的方法,通知View大小和位置发生了改变 ListenerInfo li = mListenerInfo; if (li != null && li.mOnLayoutChangeListeners != null) { ArrayList<OnLayoutChangeListener> listenersCopy = (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone(); int numListeners = listenersCopy.size(); for (int i = 0; i < numListeners; ++i) { listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB); } } } mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
} 12345678910111213141516171819202122232425262728293031323334
在这段代码中我们只要知道:如果视图的大小和位置发生变化后,会调用我们前面分析过的onLayout方法。 对于onLayout方法的最终实现全部依靠我们在自定义ViewGroup类中重写的onLayout去实现。
计算View位置:
在重写的onLayout方法中,唯一的目的就是: 对当前视图和其所有子View设置它们在父视图中具体位置(确定这个位置就依靠mLeft,mTop,mRight,mBottom这四个值) 之前介绍过,mLeft,mTop,mRight,mBottom这四个值表示的是子view相对于父view的位置。下面我贴出我画的图看一下就明白了。

如图,黄色区域是我们的父view,而中间的深色的区域就是我们的子view。 所以对于这个View来说,我列出它相对于父view的各个值是如何计算和相关函数:
mLeft,mTop,mRight,mBottom:
view.getLeft()——mLeft:子View左边界到父view左边界的距离
public final int getLeft() { return mLeft;
} 123
view.getTop()——mTop:子View上边界到父view上边界的距离 view.getRight()——mRight:子View右边界到父view左边界的距离 view.getBottom()——mBottom:子View下边距到父View上边界的距离
视图宽高:
视图宽度 view.getWidth();子View的右边界 - 子view的左边界。
public final int getWidth() { return mRight - mLeft;
} 123
视图高度 view.getHeight() ;子View的下边界 - 子view的上边界。
public final int getHeight() { return mBottom - mTop;
} 123
测量宽高:
view.getMeasuredWidth();measure过程中返回的mMeasuredWidth
public final int getMeasuredWidth() { return mMeasuredWidth & MEASURED_SIZE_MASK;
} 123
view.getMeasuredHeight();measure过程中返回的mMeasuredHeight
public final int getMeasuredHeight() { return mMeasuredHeight & MEASURED_SIZE_MASK;
} 123
最后介绍一下getWidth/Height和getMeasuredWidth/Height的区别: getWidth,和getLeft等这些函数都是View相对于其父View的位置。而getMeasuredWidth,getMeasuredHeight是测量后该View的实际值(有点绕,下面摘录一段jafsldkfj所写的Blog中的解释). 实际上在当屏幕可以包裹内容的时候,他们的值是相等的,只有当view超出屏幕后,才能看出他们的区别: getMeasuredHeight()是实际View的大小,与屏幕无关,而getHeight的大小此时则是屏幕的大小。 当超出屏幕后,getMeasuredHeight()等于getHeight()加上屏幕之外没有显示的大小
在计算子View在父View中的位置时,主要就是应用上面这几个函数。下面就来看看如何去重写onLayout。
onLayout:
对于重写onLayout的思路和重写onMeasure相同: 如果只需要测量单个View,则单独测量它自己就行。如果需要测量的View其下还有子View,则需要测量其所有的子View。
就以上面的View为例子,他最外面是一个黄色的父View,中间一个居中的深色子View。 我的思路如下: 如果想画出一个View,就要计算它的l,t,r,b值。并传递到onlayout( l, t, r, b )中; mRight = view.getWidth + mLeft; mBottom = view.getHeight + mTop; 所以最后可以用如下形式传入:onlayout( l, t, l+width, t+height );
剩下的任务就只需要知道它的mLeft值,mTop值,加上长、宽值就行了。 长宽值很简单,使用getWidth/Height和getMeasuredWidth/Height都可以。 由于这个View需要居中显示,剩下的问题就是如何计算该View的mLeft值和mTop值。我的思路如下: r(父View的mRight) = mLeft + width + mLeft(因为左右间距一样) b(父View的mBottom) = mTop + height + mTop(因为上下间距一样)
我的代码如下:
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
// 循环所有子View for (int i=0; i<getChildCount(); i++) { View child = getChildAt(i); // 取出当前子View长宽 int width = child.getMeasuredWidth(); int height = child.getMeasuredHeight();
// 计算当前的mLeft和mTop值(r,b为传递进来的父View的mRight和mBottom值) int mLeft = (r - width) / 2; int mTop = (b - height) / 2;
// 调用layout并传递计算过的参数为子view布局 child.layout(mLeft, mTop, mLeft + width, mTop + height); } } 123456789101112131415161718
布局文件如下:
<com.gxy.text.CostomViewGroup xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="wrap_content" android:layout_height="wrap_content" android:background="#eee999" >
<Button android:text="ChildView" android:layout_width="200dip" android:layout_height="200dip" android:background="#333444" android:id="@+id/textView2" />
</com.gxy.text.CostomViewGroup> 123456789101112
效果图:

总结:
onMeasure和onLayout的大致总结完了,在自定义View的时候最关键的是onLayout,因为无论你如何Measure这个View的大小,最后的决定权永远在onLayout手中,onLayout会决定具体View的大小和位置。当然onMeasure也很重要,有的情况控件的宽高不确定或者需要自定义,这时候需要我们人工Measure它。而在复杂的自定义View时,很多计算也需要在onMeasure中完成,并且些值会记录下来在onLayout中重新使用。
相关文章:
Android onLayout布局流程解析
组件布局流程结论 1.)layout流程始于ViewRootImpl的performLayout()方法,该方法会调用根View(DecorView)的layout()方法进行布局,因为DecorView是ViewGroup(FrameLayout),所以layout流程来到了ViewGroup(其…...
浅分析BIG-建筑展示系统
一、主页(主要界面)重点疑点(需要解决)1.云平台实时同步。是否可以电脑与hololens2同步或链接?并可以传输信息提醒?一级界面(启动界面)1.交互式启动激活效果(触发按钮旋转…...
模电基础(1) 半导体基础知识
基本内容: 1.本征半导体的基本介绍结构; 2.杂质半导体; 3.PN结的形成; 4.PN结的性质。 1.本征半导体 半导体:导电性能介于绝缘体和导体之间的物质。 本征半导体是纯净的晶体结构的半导体。 纯净→无杂质晶体结构→稳…...
阅读笔记:TF - IDF 原理
今天查阅 TF-IDF 资料,发现百度百科里面提供了一个例子,解释的很清楚,记下来备用。 原文链接:https://baike.baidu.com/item/tf-idf/8816134?fraladdin 例子:在某个一共有一千词的网页中 “原子能”、“的” 和 “应…...
【C语言】float 关键字
🚩write in front🚩 🔎大家好,我是謓泽,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 🏅2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4…...
Linux 网络编程(实现多路IO转接服务器)
1.select函数实现多路IO转接服务器select函数原型:包含在头文件<sys/time.h>,<sys/types.h>和<unistd.h>int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);作用:确定…...
DC-4 靶场学习
信息搜集: 首先获取靶场ip,和之前一样。 arp-scan -l nmap -sP 192.168.28.0/24然后访问。 发现需要登录。 漏洞分析: 直接用bp爆破,爆破出来密码为happy,登录。 发现执行了命令,抓包。 修改命令可以执行ÿ…...
QML组件
一个QML文件定义了一个独立的、顶级的QML组件。 一个QML组件就是一个模板,被QML运行环境解释来创建一个带有一些预定义行为的对象。 一个独立的QML组件可以运行多次来禅城多个对象,每个对象都可以称为该组件的实例。 例子: 在项目中添加一…...
canvas 学习指南
canvas 学习指南 创建一个 canvas <! DOCTYPE html><html xmlns"http://www.w3.org/1999/xhtml"><head><title></title><meta charset"utf-8" /><script type"text/javascript">window.onload fun…...
【华为OD机试2023】开心消消乐 C++
【华为OD机试2023】开心消消乐 C++ 前言 如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议! 本文解法非最优解(即非性能最优),不能保证通过率。 Tips1:机试为ACM 模式 你的代码需要处理输入输出,input/cin接收输入、print/cou…...
学历?能力?
一个面试官愿意看一张有形的总结报告,还是愿意相信看不到的人品?...
使用ECharts打造一个数据可视化面板
使用ECharts打造一个数据可视化面板1. 使用技术2. 案例适配方案3. 基础设置4. header 布局5. mainbox 主体模块6. 公共面板模块 panel7. 柱形图 bar 模块(布局)8. 中间布局9. ECharts 介绍10. ECharts 体验11. ECharts 基础配置12. 柱状图图表࿰…...
【论文简述】PVSNet: Pixelwise Visibility-Aware Multi-ViewStereo Network(arxiv 2020)
一、论文简述 1. 第一作者:Qingshan Xu 2. 发表年份:2020 3. 发表期刊:arxiv 4. 关键词:MVS、3D重建、可见性、代价体、训练策略 5. 探索动机:ETH3D基准测试提供的图像包含强烈的视图变化,这就要求MVS…...
CSS隐藏元素的几种方式以及display、visibility、opacity的区别
CSS隐藏元素的方式首先最通用且最易想到的方法肯定是display、visibility和opacity这三种了display:none设置元素不可见并且连盒模型也不生成,一般用于不占空间的隐藏元素。display属性规定元素应该生成的框的类型,当其值为“none”时可以规定元素不生成…...
【Java|golang】1487. 保证文件名唯一---golang中string方法的坑
给你一个长度为 n 的字符串数组 names 。你将会在文件系统中创建 n 个文件夹:在第 i 分钟,新建名为 names[i] 的文件夹。 由于两个文件 不能 共享相同的文件名,因此如果新建文件夹使用的文件名已经被占用,系统会以 (k) 的形式为新…...
flstudio21水果language选项中文设置方法教程
编曲是通过DAW(数字音频工作站软件)完成的,也就是我们常说的宿主软件。现在有很多优秀的宿主软件,例如Cubase、Studio One、FL Studio等。 FL Studio是一款功能强大的音乐制作软件,也被称为FruityLoops。目前已经推出…...
Ubuntu中安装StaMPS
Ubuntu中安装StaMPS0 StaMPS简介1 首先安装好MATLAB,安装一些依赖工具包2 安装StaMPS2.1 下载StaMPS安装包2.2 安装2.3 配置环境2.4 matlab中的路径设置0 StaMPS简介 官网:https://homepages.see.leeds.ac.uk/~earahoo/stamps/ A software package to e…...
Spring Security 实现自定义登录和认证(1)
1 SpringSecurity 1.1 导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId> </dependency>1.2 编写配置类 在spring最新版中禁用了WebSecurityConfigurerAdapter…...
Linux 进程:辨析wait与waitpid
目录一、wait二、waitpid(1)参数:pid(2)参数:status(3)参数:options(4)返回值wait 与 waitpid 这两个函数的作用是:等待子进程退出,在子进程退出后释放子进程资源,防止子进程变成僵尸进程。但准确的说&…...
移除元素(每日一题)
目录 一、题目描述 二、题目分析 2.1 方法一 2.1.1 思路 2.1.2 代码 2.2 方法二 2.2.1 思路 2.2.2 代码 一、题目描述 题目链接:27. 移除元素 - 力扣(LeetCode) 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
