深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)
文章目录
- 1多维数组
- 压缩维度
- 扩充维度
- 2numpy类型转换
- 深度学习常见的float32类型。
- 3数组扁平化
- 4np.where()的用法
- 5np.argmax()
- 6图像拼接
- 7生成同shape的图片,指定数据类型
1多维数组
a.shape=(3,2);既数组h=3,w=2
a.shape=(2,3,2);这里第一个2表示axis=0维度上的,三维数组中3,2)数组的个数,这里表示两个(3,2)数组。
压缩维度
- 这里axis=0指代哪里是很重要的知识点。深度学习中经常压缩一个维度,axis=0。
numpy.squeeze()函数。
语法:numpy.squeeze(a,axis = None);作用是将shape维度为1的去掉,但通常我们会指定axis=0,去除batchsize的维度。
扩充维度
- np.expand_dims(a, axis=1)将得到shape为(m, 1, n, c)的新数组,新数组中的元素与原数组a完全相同。
np.expand_dims(a, axis=2)将得到shape为(m, n, 1, c)的新数组,新数组中的元素与原数组a完全相同。
np.expand_dims(a, axis=3)将得到shape为(m, n, c, 1)的新数组,新数组中的元素与原数组a完全相同。
————————————————
版权声明:本文为CSDN博主「dekiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_41560402/article/details/105289015
2numpy类型转换
深度学习常见的float32类型。
- 函数
a.dtype = ‘float32’
>>> a = np.random.random(4)
>>> a
array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)
>>> a.dtype = 'float32'
>>> a
array([ 3.65532693e+20, 1.43907535e+00, -3.31994873e-25,1.75549972e+00, -2.75686653e+14, 1.78122652e+00,-1.03207532e-19, 1.58760118e+00], dtype=float32)
>>> a.shape
(8,)
3数组扁平化
假设C为三维数组
A = C.flatten()
4np.where()的用法
- 一维数组,返回一个array
a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])np.where(a>4)
(array([5, 6, 7], dtype=int64),)
- 二维数组,返回两个array。返回的第一个array表示行坐标,第二个array表示纵坐标,两者一一对应。
b = np.arange(4*5).reshape(4,5)b
array([[ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[10, 11, 12, 13, 14],[15, 16, 17, 18, 19]])np.where(b>14)
(array([3, 3, 3, 3, 3], dtype=int64), array([0, 1, 2, 3, 4], dtype=int64))
5np.argmax()
作用:在axis方向上找最大值的坐标。
- 语义分割中将多通道预测结果pred_mask转化为单通道mask
np.argmax(pre_mask,axis=0)。即:在通道方向上找到哪个通道的置信度最大,比如1通道表示“汽车”,2“人”,3“猴子”,那么返回的索引值刚好对应label,将不同类别的像素点用不同颜色填充在原图上,这样就可以起到分割的效果。
6图像拼接
np.hstack h-horizontal 水平方向拼接
np.hstack(array1,array2)
np.vstack vertical 竖直方向拼接
np.vstack(array1,array2)
7生成同shape的图片,指定数据类型
# 以下是常用的两种类型
b = np.zeros(a.shape,dtype='float32')
dtype = np.int
dtype = 'int8'
相关文章:

深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)
文章目录 1多维数组压缩维度扩充维度 2numpy类型转换深度学习常见的float32类型。 3数组扁平化4np.where()的用法5np.argmax()6图像拼接7生成同shape的图片,指定数据类型 1多维数组 a.shape(3,2);既数组h3,w2 a.shape(2,3,2);这里第一个2表示axis0维度上…...

(2023版)斯坦福CS231n学习笔记:DL与CV教程 (56) | 卷积神经网络
前言 📚 笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)🔗 课程链接:https://www.bilibili.com/video/BV1xV411R7i5💻 CS231n: 深度学习计算机视觉(2017…...

表单验证 ---- 在Vue2中使用ElementUI进行表单验证
目录 前言 给表单绑定对应属性 在data中定义数据对象和表单的定义规则 与数据对象双向绑定 对整个表单进行验证 前言 在做项目时,对于表单进行验证是我们必不可少的 例如 搭建一个基本的登录界面 <div class"form"><h1>登录</h1>&…...

HarmonyOS 转场动画 ForEach控制
本文 我们继续说组件的专场特效 上文 HarmonyOS 转场动画 我们通过if控制了转场效果 本文 我们通过 ForEach 控制它的加载和删除 这时候就有人会好奇 ForEach 怎么控制删除呢? 很简单 循环次数不同 例如 第一次 10个 第二次 5个 那么后面的五个就相当于删除啦 我们…...

2024--Django平台开发-订单项目管理(十四)
day14 订单管理系统 1.关于登录 1.1 UI美化 页面美化,用BootStrap 自定义BooStrapForm类实现。 class BootStrapForm:exclude_filed_list []def __init__(self, *args, **kwargs):super().__init__(*args, **kwargs)# {title:对象,"percent":对象}fo…...

Docker 安装 CentOS
Docker 安装 CentOS CentOS(Community Enterprise Operating System)是 Linux 发行版之一,它是来自于 Red Hat Enterprise Linux(RHEL) 依照开放源代码规定发布的源代码所编译而成。由于出自同样的源代码,因此有些要求高度稳定性…...

方案解决:5G基站节能及数字化管理
截至2023年10月,我国5G基站总数达321.5万个,占全国通信基站总数的28.1%。然而,随着5G基站数量的快速增长,基站的能耗问题也逐渐日益凸显,基站的用电给运营商带来了巨大的电费开支压力,降低5G基站的能耗成为…...
JavaScript深浅拷贝的几种方式
文章目录 前言深拷贝1. JSON.parse(JSON.strigify(Str))2. lodash.deepclone3. structuredClone 浅拷贝总结 前言 深浅拷贝主要是针对于引用类型而言的 深拷贝 1. JSON.parse(JSON.strigify(Str)) 序列化的作用是存储(对象本身存储的只是一个地址映射,如果断电&a…...

VBA窗体跟随活动单元格【简易版】(2/2)
上一篇博客(文章连接如下)中使用工作表事件Worksheet_SelectionChange实现了窗体跟随活动单元格的动态效果。 VBA窗体跟随活动单元格【简易版】(1/2) 为了在用户滚动工作表窗体之后仍能够实现跟随效果,需要使用Application.Windows(1).Visibl…...

个性化定制的知识付费小程序,为用户提供个性化的知识服务
明理信息科技知识付费saas租户平台 随着知识经济的兴起,越来越多的人开始重视知识付费,并希望通过打造自己的知识付费平台来实现自己的知识变现。本文将介绍如何打造自己的知识付费平台,并从定位、内容制作、渠道推广、运营维护四个方面进行…...

【轮式平衡机器人】——软硬件配置/准备
本系列以轮式平衡移动机器人为例,将使用基于模型设计(MBD)方法进行介绍,涉及基础硬件、软件、控制算法等多方面内容,结合MATLAB/Simulink的强大仿真能力和代码生成能力辅助设计!在此过程中可以系统了解开发…...

中国联通助力吴江元荡生态岸线打造5G+自动驾驶生态长廊
吴江,素有“鱼米之乡”“丝绸之府”的美誉,其地理位置优越,地处太湖之滨。近年来,随着长三角生态绿色一体化发展示范区(以下简称“示范区”)的建立,元荡更是声名大噪,成为众多游客心…...

小白准备蓝桥杯之旅(c/c++b组)
前言:省赛获奖比例高达百分之60,只要比一半的人努力,你就能大概率获奖。 寒假做的3件事 1.稳基础 熟练掌握基础语法部分,c比c多个stl库优势,c语言的同学需要会实现c中stl库部分 2.刷真题 大概比赛前30天,坚持每天做…...

Flutter GetX 之 国际化
今天给大家介绍一下 GetX 的国际化功能,在日常开发过程中,我们经常会使用到国际化功能,需要们的应用支持 国际化,例如我们需要支持 简体、繁体、英文等等。 上几篇文章介绍了GetX的 路由管理 和 状态管理,看到大家的点赞和收藏,还是很开心的,说明这两篇文章给大家起到了…...

349. 两个数组的交集(力扣)(OJ题)
题目链接:349. 两个数组的交集 - 力扣(LeetCode) 个人博客主页:https://blog.csdn.net/2301_79293429?typeblog 专栏:https://blog.csdn.net/2301_79293429/category_12545690.html 给定两个数组 nums1 和 nums2 &a…...

安全帽识别-赋能深圳自贸中心智慧工地
在当今的建筑行业中,安全管理一直是一个至关重要的议题。深圳自贸中心项目在这方面进行了一次有益的尝试——实施智慧工地安全帽识别系统。本文将对这一创新举措进行简要介绍。 项目背景 深圳自贸中心,作为一项标志性建设项目,承载着城市发展…...

代码之外:工程师的成长进阶秘籍
程序员只懂技术能行吗? 为什么说技术人员“说”和“写”总得擅长一个? 你以为的“关注结果”是真的结果吗? 从一线工程师跃升团队管理者一共分几步? 在不断变化的职场环境中,技术人如何保持竞争力并实现自我增值&a…...
openssl3.2 - 官方demo学习 - smime - smsign2.c
文章目录 openssl3.2 - 官方demo学习 - smime - smsign2.c概述笔记END openssl3.2 - 官方demo学习 - smime - smsign2.c 概述 PKCS7联合签名 从N张证书中, 分别得到N对(x509和私钥) 对明文进行签名(只是指定了bio_in和flag), 得到pkcs7* 对此pkcs7进行附加签名者的操作(指定证…...
6.C++对象模型
一.成员变量和成员函数分开存储: 在C中,类的成员变量和成员函数分开存储,只有非静态成员变量在属于类的对象上。 1.空对象的所占内存大小: //成员变量和成员函数分开存储 class Person {};void test() {Person p;cout << &…...

AbstractHttpMessageConverter + easyexcell优雅下载附件
介绍 AbstractHttpMessageConverter 是 Spring 框架中用于处理 HTTP 消息转换的抽象基类。它用于处理来自 HTTP 请求的消息,并将其转换为特定的 Java 对象,或者将 Java 对象转换为 HTTP 响应消息。 这个抽象类允许开发人员创建自定义的 HTTP 消息转换器,以便在 Spring MVC…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...