压缩编码之不同缩放参数对重建图像质量的影响的python实现——JPEG变换编码不同压缩率的模拟
原理
JPEG(Joint Photographic Experts Group)是一种常用的图像压缩标准,它通过采用离散余弦变换(DCT)和量化来实现图像的压缩。
离散余弦变换(DCT):
JPEG首先将图像分割成8x8的块。对于每个块,使用离散余弦变换(DCT)将空间域的图像数据转换为频域的系数。
DCT变换会将图像信息从原始的空间域转换到频域,这意味着图像中的信息被表示为一系列频率分量。
量化:
对于DCT变换后的每个8x8块,JPEG使用一个量化矩阵将其系数进行量化。量化的目的是减小高频部分的系数,因为在视觉上,人对于高频细节的敏感性较低。
JPEG定义了不同的量化矩阵,而不同的量化矩阵会导致不同的压缩质量。更高的压缩率通常对应着更大的量化值,因此导致更多的系数被舍弃。
熵编码:
量化后,对每个块的系数进行熵编码,通常使用Huffman编码。
Huffman编码是一种变长编码,通过为频繁出现的值分配短码字,为不太频繁出现的值分配长码字,从而进一步减小图像数据的大小。
压缩率控制:
JPEG允许用户通过设置不同的压缩质量参数来控制压缩率。更高的压缩质量通常对应着更小的压缩率,因为它会导致更少的量化失真。
压缩率的选择通常是一个权衡,用户需要根据具体的应用需求和存储/传输限制来确定适当的压缩率。
总的来说,JPEG通过DCT、量化和熵编码的组合来实现图像的有损压缩。不同的压缩率主要通过调整量化矩阵和压缩质量参数来实现。更高的压缩率通常会导致更多的信息损失,但可以获得更小的文件大小。
python实现下图
提示
结果显示了用不同比例因子去乘标准化阵列后得到的DCT编解码结果。先将原图分割为大小为8×8的子图像,并对每个子图像进行DCT变换,之后对系数阵列进行如下运算来对其量化
最后对量化后的系数阵列进行反变换得到近似图像。
代码
import cv2
import numpy as np
import matplotlib.pyplot as pltimg=cv2.imread("lena_gray_512.tif",0)
img=img.astype(np.float)
rows,cols=img.shapeimg_list = []
img_name_list = []
Z = np.array([[16, 11, 10, 16, 24, 40, 51, 61],[12, 12, 14, 19, 26, 58, 60, 55],[14, 13, 16, 24, 40, 57, 69, 56],[14, 17, 22, 29, 51, 87, 80, 62],[18, 22, 37, 56, 68, 109, 103, 77],[24, 35, 55, 64, 81, 104, 113, 92],[49, 64, 78, 87, 103, 121, 120, 101],[72, 92, 95, 98, 112, 100, 103, 99]])
scl_par=[1,2,4,8,16,32]
for scl in scl_par:dct_inv_img = np.zeros(img.shape)for i in range(0, rows, 8):for j in range(0, cols, 8):dct = cv2.dct(img[i:i+8, j:j+8])dct = np.round(dct / (Z * scl))dct_inv_img[i:i+8, j:j+8] = cv2.idct(dct)img_list.append(dct_inv_img)img_name_list.append('scl=' + str(scl))_, axs = plt.subplots(2, 3)for i in range(2):for j in range(3):axs[i, j].imshow(img_list[i*3+j], cmap='gray')axs[i, j].set_title(img_name_list[i*3+j])axs[i, j].axis('off')plt.show()
结果展示
总结
整个JPEG压缩原理就是通过DCT变换去空间冗余来达到图片压缩的。经过DCT变换之后DCT系数只保留的左上角的数据(低频分量数据),右下角部分均变成0.因此,想要进一步压缩就可以从量化表下手。量化表的量化系数越大,得到的量化后的DCT系数就越小,高频信息消失的更多,图片容量就越小。
相关文章:

压缩编码之不同缩放参数对重建图像质量的影响的python实现——JPEG变换编码不同压缩率的模拟
原理 JPEG(Joint Photographic Experts Group)是一种常用的图像压缩标准,它通过采用离散余弦变换(DCT)和量化来实现图像的压缩。 离散余弦变换(DCT): JPEG首先将图像分割成8x8的块…...

大数据导论(2)---大数据与云计算、物联网、人工智能
文章目录 1. 云计算1.1 云计算概念1.2 云计算的服务模式和类型1.3 云计算的数据中心与应用 2. 物联网2.1 物联网的概念和关键技术2.2 物联网的应用和产业2.3 大数据与云计算、物联网的关系 1. 云计算 1.1 云计算概念 1. 首先从商业角度给云计算下一个定义:通过网络…...

有序矩阵中第 K 小的元素
题目链接 有序矩阵中第 K 小的元素 题目描述 注意点 每行和每列元素均按升序排序找到一个内存复杂度优于 O(n) 的解决方案 解答思路 使用二分查找,思路为: (1)因为左上角的元素值更小,右下角的元素值更大…...

Nginx详细介绍(并从技术层面深度剖析)
nginx介绍 1.nginx 介绍2.nginx的优势3.Nginx VS Apache3.1.内核、语言、诞生时间比较3.2.功能比较3.3.Nginx 相对 apache 的优点 4.Nginx为什么有这么多的优势?4.1.IO多路复用(I/O multiplexing【多并发】)4.2.nginx的驱动模型介绍4.3.nginx…...
单元测试基本概念
单元测试一般是开发来做的,但是因为业务需要也曾涉及过单元测试。目前就单元测试的基础概念做下总结。 一、 单元测试定义: 单元测试是软件开发中的一种测试方法,用于验证程序中的最小可测单元——即代码中的单个函数、方法或模块。单元测试…...

ECTouch 电商微信小程序 SQL注入漏洞复现(CVE-2023-39560)
0x01 产品简介 ECTouch是一款开源的电商系统,为中小企业提供最佳的新零售解决方案 0x02 漏洞概述 ECTouch 电商系统 /ectouch-main/include/apps/default/helpers/insert.php 文件中第285行的 insert_bought_notes 函数中,传入的 $arr[id] 参数未进行验证和过滤,导致未经…...

MCM备赛笔记——熵权法
Key Concept 熵权法是一种基于信息熵概念的权重确定方法,用于多指标决策分析中。信息熵是度量信息量的不确定性或混乱程度的指标,在熵权法中,它用来反映某个指标在评价过程中的分散程度,进而确定该指标的权重。指标的分散程度越高…...

vscode设置terminal的最大行数
今天跑代码出现一个问题,就是整个程序跑完,整个程序的输出信息过多,最开始输出的信息已经被vscode的缓存冲掉了,只能看到最后的一部分,具体的原因是vscode的terminal默认只能保存1000行的信息,所以如果想保…...
kafka hang 问题记录
参考文档 https://cloud.tencent.com/developer/article/1821477 9092端口 端口9092通常与Apache Kafka关联。 Kafka是一个开源的分布式事件流平台,用于构建实时的数据管道和流应用。 它能够处理任意大小的数据,以容错的方式处理数据流。 在默认配置…...
Jmeter-BeanShell脚本中for循环里面使用random随机数函数,每次生成的都一样
预想的是每次循环生成的随机数不一样,但实际使用Random函数生成的是重复的。 以下是部分原代码: List updateList new ArrayList(); for(Object o: fieldList){Map map new HashMap();map.put("id", o.get("id"));map.put("…...

高级编程。JavaScript中有哪些类型转换机制?
一、概述 前面我们讲到,JS中有六种简单数据类型:undefined、null、boolean、string、number、symbol,以及引用类型:object 但是我们在声明的时候只有一种数据类型,只有到运行期间才会确定当前类型 let x y ? 1 : …...

Linux系统下常用软件安装汇总,包括mysql,java,git,redis等
01.环境搭建 1.安装列表 MySQL 5.7.11 Java 1.8 Apache Maven 3.6 tomcat8.5 git Redis Nginx python docker 2.安装mysql 1.拷贝mysql安装文件到Linux的某个目录下 2.解压Linux安装包:tar -xvzf mysql-5.7.32-linux-glibc2.12-x86_64.tar.gz 3.进入解压后…...
【Linux】——期末复习题(一)
🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL:…...

【论文阅读】Speech Driven Video Editing via an Audio-Conditioned Diffusion Model
DiffusionVideoEditing:基于音频条件扩散模型的语音驱动视频编辑 code:GitHub - DanBigioi/DiffusionVideoEditing: Official project repo for paper "Speech Driven Video Editing via an Audio-Conditioned Diffusion Model" paper&#…...

【华为 ICT HCIA eNSP 习题汇总】——题目集4
1、(多选)网络中出现故障后,管理员通过排查发现某台路由器的配置被修改了,那么管理员应该采取哪些措施来避免这种状况再次发生? A、管理员应该通过配置 ACL 来扩展只有管理员能够登录设备 B、管理员应该在路由的管理端…...

hadoop-common: CMake failed with error code 1
问题 在编译hadoop源码时遇到如下错误 hadoop-common: CMake failed with error code 1 看了这个错误表示一脸懵逼 排查 在mvn 的命令中增加 -X 和 -e mvn clean package -e -X -Pdist,native -DskipTests -Dmaven.javadoc.skip -Dopenssl.prefix/usr/local/bin/openssl 在…...
【面试】-科大讯飞日常实习面试
科大讯飞日常实习面试 提问的问题 面试30min,基本就是介绍项目以及提问java八股文,没有算法题 java保证线程安全的方法 需要根据具体场景选择合适的方法来保证线程安全。java中的异步请求如何实现你的SpringBoot项目怎么匹配在线人数请说出spring springMVC springboot之间的…...
MySQL 数据加密
MySQL 数据加密主要用于保护存储在数据库中的敏感信息,如用户密码、个人身份信息等。MySQL 提供了多种数据加密方法,主要包括: 对称加密: AES_ENCRYPT() 和 AES_DECRYPT() 函数:MySQL 支持使用高级加密标准(…...

风丘科技为您提供完整的ADAS测试方案
一 方案概述 随着5G通讯与互联网的快速发展,智能汽车和ADAS辅助系统的研究与发展在世界范围内也在如火如荼地进行。风丘科技紧跟时代脚步,经多年积累沉淀,携手整车厂与高校共同研发打造出了一套完整且适用于国内ADAS测试的系统方案。 | ADAS…...

深入理解Rust基本类型
文章目录 一、概述二、数值类型2.1、整数类型2.2、浮点类型2.3、数字运算2.4、位运算2.5、序列(Range)2.6、有理数和复数 三、字符、布尔、单元类型3.1、字符类型3.2、布尔类型(bool)3.3、单元类型 团队博客: 汽车电子社区 一、概…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...