当前位置: 首页 > news >正文

Pytorch 对比TensorFlow 学习:Day 17-18: 循环神经网络(RNN)和LSTM

Day 17-18: 循环神经网络(RNN)和LSTM

在这两天的学习中,我专注于理解循环神经网络(RNN)和长短期记忆网络(LSTM)的基本概念,并学习了它们在处理序列数据时的应用。

1.RNN和LSTM基础:

RNN:了解了RNN是如何处理序列数据的,特别是它的循环结构可以用于处理时间序列或连续数据。
LSTM:学习了LSTM作为RNN的一种改进,它通过引入遗忘门、输入门和输出门解决了RNN的长期依赖问题。

2.实践应用:

使用这些概念来处理一个简单的序列数据任务,例如时间序列预测或文本数据处理。
构建一个包含RNN或LSTM层的神经网络模型。

3.PyTorch和TensorFlow实现:

在PyTorch中,使用nn.RNN或nn.LSTM来实现这些网络。
在TensorFlow中,使用Keras的SimpleRNN或LSTM层。

PyTorch代码示例:

import torch
import torch.nn as nn
import torch.optim as optim
class SimpleLSTM(nn.Module):#定义一个简单的LSTM模型
def init(self, input_size, hidden_size, num_classes):
super(SimpleLSTM, self).init()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 初始隐藏状态和细胞状态
h0 = torch.zeros(1, x.size(0), hidden_size)
c0 = torch.zeros(1, x.size(0), hidden_size)
# 前向传播
out, _ = self.lstm(x, (h0, c0))
out = out[:, -1, :]
out = self.fc(out)
return out
#实例化模型、定义损失函数和优化器
input_size = 10 # 输入数据的特征维度
hidden_size = 20 # 隐藏层特征维度
num_classes = 2 # 输出类别数
model = SimpleLSTM(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

TensorFlow代码示例
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

#定义一个简单的LSTM模型
model = Sequential([
LSTM(20, input_shape=(None, 10)), # 输入序列的长度任意,特征维度为10
Dense(2, activation=‘softmax’) # 假设是二分类问题
])

#编译模型
model.compile(optimizer=‘adam’,
loss=‘sparse_categorical_crossentropy’,
metrics=[‘accuracy’])

#模型概要
model.summary()

相关文章:

Pytorch 对比TensorFlow 学习:Day 17-18: 循环神经网络(RNN)和LSTM

Day 17-18: 循环神经网络(RNN)和LSTM 在这两天的学习中,我专注于理解循环神经网络(RNN)和长短期记忆网络(LSTM)的基本概念,并学习了它们在处理序列数据时的应用。 1.RNN和LSTM基础…...

Java基础 - 07 Set之Set,AbstractSet

上边几篇,我们对java的List集合进行相关介绍,了解了关于List集合下的相关实现类的方法或者接口。 自本篇开始,将围绕java的Set进行介绍,也是对我java知识的巩固吧,处理业务越多,发现自己对基础知识的薄弱&…...

C++17新特性(三)新的标准库组件

1. optional 在编程时,我们经常会遇到可能会返回/传递/使用一个确定类型对象的场景。也就是说,这个对象可能有一个确定类型的值也可能没有任何值。因此,我们需要一种方法来模拟类似指针的语义:通过nullptr表示指针为空。解决方法…...

Spring Boot入门

SpringBoot介绍 什么是SpringBoot Spring Boot是由Pivotal团队提供的全新框架,其中“Boot”的意思就是“引导”,Spring Boot 并不是对 Spring 功能上的增强,而是提供了一种快速开发 Spring应用的方式。 特点 • 嵌入的 Tomcat&#xff0c…...

【LeetCode】数学精选4题

目录 1. 二进制求和(简单) 2. 两数相加(中等) 3. 两数相除(中等) 4. 字符串相乘(中等) 1. 二进制求和(简单) 从字符串的右端出发向左做加法,…...

【漏洞复现】Hikvision SPON IP网络对讲广播系统命令执行漏洞(CVE-2023-6895)

文章目录 前言声明一、系统简介二、漏洞描述三、影响版本四、漏洞复现五、修复建议 前言 Hikvision Intercom Broadcasting System是中国海康威视(Hikvision)公司的一个对讲广播系统。 声明 请勿利用文章内的相关技术从事非法测试,由于传播…...

IDEA在重启springboot项目时没有自动重新build

IDEA在重启springboot项目时没有自动重新build 问题描述 当项目里面某些依赖或者插件更新了,target的class文件没有找到,导致不是我们需要的效果。 只能手动的清理target文件,麻烦得很 , 单体项目还好说,一次清理就…...

华为设备NAT的配置

实现内网外网地址转换 静态转换 AR1: sys int g0/0/0 ip add 192.168.10.254 24 int g0/0/1 ip add 22.33.44.55 24 //静态转换 nat static global 22.33.44.56 inside 192.168.10.1 动态转换 最多有两台主机同时访问外网 AR1: sys int g0/0/0 ip add…...

48-DOM节点,innerHTML,innerText,outerHTML,outerText,静态获取,单机click,cssText

1.DOM基础 Document Object Module,文档对象模型,window对象,document文档,都可以获取和操作 1)文档节点 2)属性节点(标签内的属性href,src) 3)文本节点(标签内的文字) 4)注释节点 5)元素节点(标签) 2.获取元素节点 2.1通过标签名获取getElementsByTagName() …...

多输入多输出 | Matlab实现基于LightGBM多输入多输出预测

多输入多输出 | Matlab实现基于LightGBM多输入多输出预测 目录 多输入多输出 | Matlab实现基于LightGBM多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现基于LightGBM多输入多输出预测(完整源码和数据) 1.data为数据集&a…...

【欢迎您的到来】这里是开源库get_local_info作者的付费专栏

您好, 我是带剑书生,开源库get_local_info的作者,欢迎您的到来,这里是我的付费专栏,在上一个付费专栏里,用简洁的语言,通俗的话语,帮助您更好的学习了Rust,现在将用本专栏…...

Java SE入门及基础(23)

目录 方法带参 1. 构造方法带参 案例场景 思考:以上代码存在什么问题? 2. 方法带参 方法带参语法 案例场景 思考:以上代码存在什么问题? Java SE文章参考:Java SE入门及基础知识合集-CSDN博客 方法带参 1. 构造方法带参 …...

蓝桥杯回文日期判断

思想:对于回文数的判断方法,最快的就是取其中一半的字符串长度,为s,然后将其进行翻转为s’ ,再把两者进行拼接即可保证是回文数,这样子就解决了枚举所有回文数的问题。 注意点: 要求必须是有效…...

Qt文件和目录相关操作

1.相关说明 QCoreApplication类、QFile类、QDir、QTemporaryDir类、QTemporaryFile类、QFileSystemWatcher类的相关函数 2.相关界面 3.相关代码 #include "dialog.h" #include "ui_dialog.h" #include <QFileDialog> #include <QTemporaryDir>…...

递归、搜索与回溯算法(专题一:递归)

往期文章&#xff08;希望小伙伴们在看这篇文章之前&#xff0c;看一下往期文章&#xff09; &#xff08;1&#xff09;递归、搜索与回溯算法&#xff08;专题零&#xff1a;解释回溯算法中涉及到的名词&#xff09;【回溯算法入门必看】-CSDN博客 接下来我会用几道题&#…...

element-ui 打包流程源码解析(下)

目录 目录结构和使用1&#xff0c;npm 安装1.1&#xff0c;完整引入1.2&#xff0c;按需引入 2&#xff0c;CDN3&#xff0c;国际化 接上文&#xff1a;element-ui 打包流程源码解析&#xff08;上&#xff09; 文章中提到的【上文】都指它 ↑ 目录结构和使用 我们从使用方式来…...

ChatGPT给出的前端面试考点(Vue.js)

ChatGPT给出的前端面试考点&#xff08;Vue.js&#xff09; 答案 1. Vue.js是什么&#xff1f;它的主要特点是什么&#xff1f; Vue.js是一个渐进式JavaScript框架&#xff0c;用于构建用户界面。它的主要特点包括&#xff1a; 数据绑定&#xff1a;Vue.js使用双向数据绑定&…...

ChatGPT 商业提示词攻略书

原文&#xff1a;ChatGPT Business Prompt Playbook 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 一、书系介绍 人工智能发展迅速。非常迅速。 所以我希望你做两件事&#xff1a; (1) 在 Twitter 上关注我&#xff1a;iamkylebalmer (2) 订阅我的免费电子邮件通…...

Notepad++运行C语言输出乱码

方法一&#xff1a;编码-编码字符集-中文-GB2312 这时原程序中文会变成乱码&#xff0c;我是重新输入中文 重新编译执行即可 缺陷&#xff1a;重开一个程序有中文还是会显示乱码&#xff0c;需要重新设置编码&#xff0c;比较麻烦 方法二&#xff1a;设置-首选项-新建-右侧编…...

深入解析 Java 方法引用:Lambda 表达式的进化之路

前言 方法引用是 Java 8 提供的一种新特性&#xff0c;它允许我们更简洁地传递现有方法作为参数。这项特性实际上是对 Lambda 表达式的一种补充&#xff0c;通过方法引用&#xff0c;我们可以直接引用现有方法&#xff0c;而无需编写完整的Lambda表达式。最近在使用方法引用的…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

CSS3相关知识点

CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...