当前位置: 首页 > news >正文

【AI理论知识】EM算法

基本定义

期望最大化算法(Expectation-Maximization,EM算法)是一种用于估计包含潜在变量的概率模型参数的迭代优化算法。EM算法的主要目标是在存在未观测数据或缺失数据的情况下,通过迭代地进行期望步骤(E步)和最大化步骤(M步),来估计模型的参数。

算法步骤

  1. 初始化: 随机初始化模型参数。

  2. E步(Expectation): 使用当前模型参数估计潜在变量的期望(Expectation)。这通常涉及计算给定观测数据的潜在变量的后验分布。

  3. M步(Maximization): 最大化期望步骤中计算得到的期望,更新模型的参数。这涉及通过最大化似然函数或边缘似然函数来找到新的参数。

  4. 迭代: 重复执行E步和M步,直到模型参数收敛或达到预定的迭代次数。

优点

对潜在变量的处理能力和在估计复杂模型参数时的鲁棒性

缺点

其对初始值的敏感性和可能陷入局部最优解。

应用场景

  1. 高斯混合模型(GMM): EM算法的典型应用之一是对高斯混合模型的参数估计。GMM在许多领域中被用于建模复杂的概率分布,例如图像分割、语音识别和模式识别。

  2. 缺失数据问题: 当数据中存在缺失值时,EM算法可以用于估计缺失数据的概率分布。这在处理实际数据集时很常见,例如医学或社会科学研究中的调查数据。

  3. 混合模型: EM算法可以用于估计混合模型的参数,其中数据可以由多个组成分或成分生成。这种模型在聚类、分布拟合和异常检测等任务中有应用。

  4. 隐变量模型: 在一些问题中,存在未观测到的隐变量,而EM算法可以用于通过观测数据来估计这些隐变量的分布,从而推断模型的参数。

  5. 正态混合模型: EM算法被广泛应用于正态混合模型的参数估计,这在金融领域中用于建模资产收益率和风险管理。

  6. 模型选择: EM算法也可以用于模型选择问题,通过比较不同模型的似然性来确定最合适的模型。

  7. 概率图模型: 在概率图模型中,EM算法可以用于参数估计,例如在隐马尔可夫模型(HMM)中,用于估计转移概率和观测概率。

  8. 文本挖掘: EM算法在文本挖掘中被用于主题模型,如Latent Dirichlet Allocation(LDA),用于发现文本数据中的隐藏主题结构。

 实例

实现医学图像去噪

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal# 生成带噪声的二维图像
np.random.seed(42)
size = 100
x, y = np.meshgrid(np.linspace(0, 1, size), np.linspace(0, 1, size))
true_image = np.sin(2 * np.pi * x) * np.cos(2 * np.pi * y)
noisy_image = true_image + np.random.normal(0, 0.1, (size, size))# EM算法去噪
def em_denoise(image, num_components, num_iterations):# 将二维图像转换为一维数组flat_image = image.flatten()# 初始化模型参数mean = np.linspace(np.min(flat_image), np.max(flat_image), num_components)covariance = np.ones(num_components)weights = np.ones(num_components) / num_componentsfor _ in range(num_iterations):# E步pdfs = np.array([weights[k] * multivariate_normal.pdf(flat_image, mean[k], covariance[k]) for k in range(num_components)])posteriors = pdfs / pdfs.sum(axis=0)# M步mean = np.dot(posteriors, flat_image) / posteriors.sum(axis=1)covariance = np.dot(posteriors, (flat_image - mean.reshape(-1, 1))**2) / posteriors.sum(axis=1)weights = posteriors.sum(axis=1) / len(flat_image)# 根据估计的参数生成去噪后的图像denoised_image = np.dot(posteriors.T, mean).reshape(image.shape)return denoised_image# 使用EM算法进行去噪
num_components = 2
num_iterations = 50
denoised_result = em_denoise(noisy_image, num_components, num_iterations)# 可视化结果
plt.figure(figsize=(12, 4))
plt.subplot(131)
plt.imshow(true_image, cmap='viridis')
plt.title('True Image')plt.subplot(132)
plt.imshow(noisy_image, cmap='viridis')
plt.title('Noisy Image')plt.subplot(133)
plt.imshow(denoised_result, cmap='viridis')
plt.title('Denoised Image')plt.show()

相关文章:

【AI理论知识】EM算法

基本定义 期望最大化算法(Expectation-Maximization,EM算法)是一种用于估计包含潜在变量的概率模型参数的迭代优化算法。EM算法的主要目标是在存在未观测数据或缺失数据的情况下,通过迭代地进行期望步骤(E步&#xff…...

03 OSPF

参考文章 1 初步认识OSPF的大致内容(第三课)-CSDN博客 2...

node.js(express.js)+mysql实现注册功能

文章目录 实现步骤一、获取客户端提交到服务器的用户信息,对表单中的数据,进行合法性的效验 代码如下:二、检测用户名是否被占用三、对密码进行加密四、插入新用户(完整代码)总结 实现步骤 一、获取客户端提交到服务器的用户信息…...

AI绘画Stable Diffusion进阶使用

本文讲解,模型底模,VAE美化模型,Lora模型,hypernetwork。 文本Stable Diffusion 简称sd 欢迎关注 使用模型 C站:https://civitai.com/ huggingface:https://huggingface.co/models?pipeline_tagtext-to-…...

C 练习实例33 - 质数(素数)判断

题目:判断一个数字是否为质数。 程序分析:质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除。 这题做过很多遍了,懂得都懂。 代码…...

docker环境下mongo副本集的部署及异常修复

最近更换了办公地点。部署在本地docker环境里的mongo数据库不能使用了。原因是本地的ip地址变更。以前的mongo副本集的配置需要更新。处理完后,索性重新记录一下mongo副本集在docker中的部署流程。 mongo的事务及副本集 我们先了解一下什么是事务,事务…...

【Java】Maven的安装与配置

初识Maven Maven是专门用于管理和构建Java项目的工具,它的主要功能有: 提供了一套标准化的项目结构 提供了一套标准化的构建流程(编译,测试,打包,发布……) 提供了一套依赖管理机制 标准化的…...

向量和向量如何相乘?

向量与向量相乘主要有两种方式:点积(内积)和叉积(外积)。这两种运算的结果和应用是不同的。 点积(内积): 点积是两个向量的对应元素相乘后再求和的结果,通常用于计算两个…...

计算机组成原理 指令流水线

文章目录 指令流水线指令流水线的概念流水线性能分析流水线的吞吐率流水线的加速比流水线的效率 影响流水线的因素结构相关 (资源冲突)数据相关 (数据冲突)控制相关 (控制冲突) 流水线分类超量流水线 指令流水线 #mermaid-svg-sWaRASMFAvh8sLJk {font-family:"trebuchet m…...

macOS - md5 | md5sum

文章目录 简单使用介绍文档Linux - md5summacOS - md5 大文件传输是否完整,你可以使用 md5 进行校验 linux 上使用 md5sum 命令,在macOS 上 md5 命令是和 md5sum 等效的 简单使用介绍 参考:https://blog.csdn.net/cnds123321/article/detail…...

Tomcat快速入门

1.Tomcat介绍 Apache Tomcat 是由 Apache Software Foundation(ASF)开发的一个开源 Java WEB 应用服务器,如apache处理静态HTML能力突出不同,tomcat处理动态HTML能力相当强大,因此一般项目都是部署apachetomcat&#…...

如何结合antd design pro 5 结合express 上传多个文件

在Ant Design Pro 5(基于React)的前端界面结合Express后端实现上传整个文件夹的文件,实际上是在前端进行多文件选择,并通过POST请求将文件列表发送到后端,然后由后端处理上传。由于浏览器API限制,直接上传整…...

Django随笔

关于Django的admin 1. 在url中把 from django.contrib import admin 重新解开 把path(admin/,admin.site.urls), 解开 2. 注册app,在配置文件中写 django.contrib.admin, 3.输入命令进行数据库迁移 Django国际化 配置文件中(改成中文) LA…...

线程和进程的区别(从JVM角度出发)

进程与线程的区别 线程具有许多传统进程所具有的特征,故又称为轻型进程(Light—Weight Process)或进程元;而把传统的进程称为重型进程(Heavy—Weight Process),它相当于只有一个线程的任务。在引入了线程的操作系统中,通常一个进…...

手把手教你如何快速定位bug,如何编写测试用例,快来观摩......

手把手教你如何快速定位bug,如何编写测试用例,快来观摩......手把手教你如何快速定位bug,如何编写测试用例,快来观摩......作为一名测试人员如果连常见的系统问题都不知道如何分析,频繁将前端人员问题指派给后端人员,后端人员问题指派给前端人员&#xf…...

计算矩阵边缘元素之和(c++)

题目描述 输入一个整数矩阵&#xff0c;计算位于矩阵边缘的元素之和。所谓矩阵边缘的元素&#xff0c;就是第一行和最后一行的元素以及第一列和最后一列的元素。 输入格式 第一行分别为矩阵的行数 和列数 &#xff08;m<100&#xff0c;n<100&#xff09;&#xff0c…...

java使用jsch处理软链接判断是否文件夹

前言 这一次主要是碰到一个问题。因为使用jsch去读取文件的时候&#xff0c;有一些文件它是使用软链接制作的一个映射。因为这里面有一个问题。如果它是软链接你就无法判断他到底是文件。还是文件夹&#xff1f;因为他没有提供可以直接读取的方法&#xff0c;用权限信息去判断…...

【2023】java使用WebClient实现chatGPT调用建立web socket连接

&#x1f4bb;目录 一、介绍1、使用技术2、效果 二、代码1、前端代码2、后端代码2.1、maven依赖2.2、model2.2.1、请求接口的格式2.2.2、响应数据对象 2.3、工具类2.3.1、&#x1f534;使用WebClient调用chatgpt方法2.3.2、&#x1f7e0; webSocket连接对话方法 2.4、Controlle…...

力扣【四数之和】

一、题目描述 18. 四数之和 给你一个由 n 个整数组成的数组 nums &#xff0c;和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] &#xff08;若两个四元组元素一一对应&#xff0c;则认为两个四元组重复&#x…...

IMX6LL|linux设备驱动模型

linux设备驱动模型 为什么需要设备驱动模型 早期内核&#xff08;2.4之前&#xff09;没有统一的设备驱动模型&#xff0c;但照样可以用2.4~2.6期间使用devfs&#xff0c;挂载在/dev目录。 需要在内核驱动中创建设备文件(devfs_register)&#xff0c;命名死板 2.6以后使用sys…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...