Opencv轮廓检测运用与理解
目录
引入
基本理解
加深理解
①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓
②我们还可以用一个矩形把我们的轮廓给框出来
③计算轮廓的周长和面积
引入
顾名思义,就是把我们图片的轮廓全部都描边出来
也就是我们在日常生活中面部识别的时候会有一个框,那玩意就是
基本理解
我们还是通过例子来基本的理解以下opencv是如何实现轮廓识别的
这是我们的原图像 test.png


实现代码
cv2.findContours(img,mode,method)
img:轮廓检索模式:
- 传入的图像
mode:轮廓检索模式:
- RETR_EXTERNAL :只检索最外面的轮廓;
- RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
- RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
- RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;(一般只用这种)
method:轮廓逼近方法
- CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,输出完整的轮廓(一般用这种)
- CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。(即只保留轮廓点)
返回的值:
contours 获取到的轮廓点 hierarchy层数(可以不用管)
cv2.drawContours(图像,轮廓,轮廓索引,颜色模式,线条厚度)
注意:会影响我们传入的原图像,记得定义一个临时图像传入进去
import cv2img = cv2.imread("test.png")
img = cv2.resize(img,(500,400))
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 阈值处理,让图像颜色只有2种颜色 提高准确性
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 进行轮廓处理
# cv2.findContours返回两个值
# contours 轮廓点(是个列表)
# hierarchy 层数(用不到)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 轮廓描边后会影响原图,所以我们定义一个临时的图片
temp_img = img.copy()
# 进行轮廓描边
# contours 获取到的轮廓点
# -1 表示的画出所有的轮廓,eg:0就表示我们列表中第一个轮廓
# (0, 0, 255) 表示我们用红色线条来绘画 bgr
# 2 表示线条粗细
res = cv2.drawContours(temp_img, contours, -1, (0, 0, 255), 2)cv2.imshow("res",res)
cv2.waitKey()
cv2.destroyAllWindows()
结果:

加深理解
除了最基本的用法,我们还有很多扩充的用法
①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 取出列表中第一个
con = contours[0]
# 绘制
res = cv2.drawContours(temp_img, con, -1, (0, 0, 255), 2)
# 展示
cv2.imshow("res",res)
我们可以看到,只出现了我们列表第一个的轮廓
![]()
②我们还可以用一个矩形把我们的轮廓给框出来
原图像:

实现代码:
img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]# 返回我们要绘制的矩形特征
x,y,w,h = cv2.boundingRect(cnt)
# 绘制矩形
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')
x,y,w,h = cv2.boundingRect(cnt)
返回我们的x和y的坐标 以及宽和高
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
绘制我们的矩形
(x,y)表示我们的开始坐标
(x+w,y+h)表示我们的边
最后会自动把对边连接起来形成一个矩形
结果:

③计算轮廓的周长和面积
这个很简单,就是调用两个函数就能实现对应得功能
cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)
相关文章:
Opencv轮廓检测运用与理解
目录 引入 基本理解 加深理解 ①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓 ②我们还可以用一个矩形把我们的轮廓给框出来 ③计算轮廓的周长和面积 引入 顾名思义,就是把我们图片的轮廓全部都描边出来 也就是我们在日常生活中面部识别的时候会有一个框,那玩意就…...
Java 8的新特性简单分享(后续有系列篇~敬请期待)
Java 8的新特性分享 Java 8是Java语言迎来的一次革命性的更新,引入了众多强大的新特性,使得Java开发变得更加现代化和便捷。在这篇博客中,我们将深入探讨Java 8的一些主要特性,并通过丰富的案例演示展示它们的用法。 1. Lambda表…...
计算机网络-计算机网络的概念 功能 发展阶段 组成 分类
文章目录 计算机网络的概念 功能 发展阶段总览计算机网络的概念计算机网络的功能计算机网络的发展计算机网络的发展-第一阶段计算机网络的发展-第二阶段-第三阶段计算机网络的发展-第三阶段-多层次ISP结构 小结 计算机网络的组成与分类计算机网络的组成计算机网络的分类小结 计…...
246.【2023年华为OD机试真题(C卷)】分月饼(动态规划-JavaPythonC++JS实现)
🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-分月饼二.解题思路三.题解代码Python题解代码J…...
java大数据hadoop2.9.2 Linux安装mariadb和hive
一、安装mariadb 版本centos7 1、检查Linux服务器是否已安装mariadb yum list installed mariadb* 2、如果安装了,想要卸载 yum remove mariadb rm -rf /etc/my.cnf rm -rf /var/lib/mysql 才能完全删除 3、安装mariadb 在线网络安装 yum install -y mari…...
Docker部署微服务问题及解决
👨🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:Docker容器命令案例:Nginx容器修改,Redis容器持久化 📚订阅专栏:Docker 希望文章…...
Android: alarm定时很短时,比如500ms,测试执行mPowerManager.forceSuspend()后,系统不会suspend
参考文档: https://blog.csdn.net/weixin_35691921/article/details/124961404 Android: alarm定时很短时,比如500ms,然后执行mPowerManager.forceSuspend()后,系统不会suspend,原因分析: static int ala…...
一个简单好用的C语言单元测试框架-Unity
Unity简介: Unity是一个用于C语言的轻量级单元测试框架。它由Throw The Switch团队开发,旨在简化嵌入式系统的单元测试。单元测试中单元的含义,单元就是人为规定的最小的被测功能模块,如C语言中单元指一个函数,Java里…...
ubuntu系统 vscode 配置c/c++调试环境
文章目录 1.安装插件2.目录结构3.cmake tools配置 1.安装插件 c/c插件 cmake cmake tools插件 2.目录结构 . ├── build ├── CMakeLists.txt ├── demo │ └── main.cpp ├── image.png ├── src │ ├── add.cpp │ └── add.hpp └── vsdebug.…...
算法练习-A+B/财务管理/实现四舍五入/牛牛的菱形字符(题目链接+题解打卡)
难度参考 难度:简单 分类:熟悉OJ与IDE的操作 难度与分类由我所参与的培训课程提供,但需要注意的是,难度与分类仅供参考。以下内容均为个人笔记,旨在督促自己认真学习。 题目 A B1. A B - AcWing题库财务管理1004:财…...
XSS语句
XSS测试语句 在测试网站是否存在XSS漏洞时,应该输入一些标签如<,>输入后查看网页源代码是否过滤标签,如果没过滤,很大可能存在XSS漏洞。 <h5>1</h5> <span>1</span> <SCRIPT>alert(document.cookie)&l…...
AD导出BOM表 导出PDF
1.Simple BOM: 这种模式下,最好在pcb界面,这样的导出的文件名字是工程名字,要是在原理图界面导出,会以原理图的名字命名表格。 直接在菜单栏 报告->Simple BOM 即可导出物料清单,默认导出 comment pattern qu…...
linux 的nobody是什么用户? 对安全有没有影响?
目 录 一、前言:nobody是不是可疑用户? 二、Linux系统中的nobody用户? 二、有nobody用户存在,安全吗? 一、前言:nobody是不是可疑用户? 在前面一篇文章“Linux安全问题,如何查看哪…...
2024年华数杯国际数学建模B 光伏电(Problem B: Photovoltaic Power)完整思路以及源代码分享
背景 中国的电力构成包括传统的能源发电(如煤炭、石油和天然气)、可再生能源发电 (如水力发电、风能、太阳能和核能)和其他形式的电力。这些发电方式在满足中 国巨大的电力需求方面发挥着至关重要的作用。根据最新数据…...
在 Spring MVC 中,用于接收前端传递的参数的注解有以下几种
目录 RequestParam: PathVariable: RequestBody: RequestHeader: CookieValue: RequestParam: 用于获取请求参数的值。可以指定参数名称和默认值。示例代码: GetMapping("/users&q…...
K8s常用命令
查看集群各节点的状态 部署应用 删除一个service服务 查询service服务列表 kubectl get services 查看网络资源 kubectl get svc pod 创建一个namespace kubectl create namaspace namespace名称 创建一个pod 通常不需要创建pod 查看pod kubectl get pods kube…...
MySQL的基本操作
目录 序言 一、SQL语句(Structured Query Language) 1.1 SQL简介 1.2 SQL语句的分类 1.3 SQL语句的书写规范 二、数据库操作 2.1 查看库 2.2 创建库 2.3 切换库 2.4 删除库 三、MySQL字符集 3.1 MySQL字符集的分类 3.2 UTF8和UTF8MB4的区别…...
【b站咸虾米】chapter4_vue组件_新课uniapp零基础入门到项目打包(微信小程序/H5/vue/安卓apk)全掌握
课程地址:【新课uniapp零基础入门到项目打包(微信小程序/H5/vue/安卓apk)全掌握】 https://www.bilibili.com/video/BV1mT411K7nW/?p12&share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 四、vue组件 uni-app官网 …...
Java网络编程——UDP通信原理
一、TCP和UDP概述 传输层通常以TCP和UDP协议来控制端点与端点的通信 TCPUDP协议名称传输控制协议用户数据包协议是否连接面向连接的协议。数据必须要建立连接无连接的协议,每个数据报中都给出完整的地址信息,因此不需要事先建立发送方和接受方的连接是…...
Spring | Srping AOP (AOP简介、动态代理、基于“代理类”的AOP实现)
目录: 1.Spring AOP简介1.1 AOP简介1.2 AOP术语 2.动态代理2.1 JDK动态代理2.2 CGLIB代理 3.基于“代理类”的AOP实现3.1 Spring的通知类型3.2 ProxyFactoryBean ( 可通知.xml配置文件完成aop功能 ) 1.Spring AOP简介 1.1 AOP简介 Spring的AOP模块,是Spring框架体系…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

