[pytorch入门] 3. torchvision中的transforms
torchvision中的transforms
是transforms.py工具箱,含有totensor、resize等工具
用于将特定格式的图片转换为想要的图片的结果,即用于图片变换
用法
在transforms中选择一个类创建对象,使用这个对象选择相应方法进行处理
能够选择的类
列表
["Compose","ToTensor", # 转化为tensor类型"PILToTensor","ConvertImageDtype","ToPILImage", # tenor或ndarray转换为PIL image"Normalize", # 归一化(用均值或标准差归一化tensor类型的image)"Resize","CenterCrop","Pad","Lambda","RandomApply","RandomChoice","RandomOrder","RandomCrop","RandomHorizontalFlip","RandomVerticalFlip","RandomResizedCrop","FiveCrop","TenCrop","LinearTransformation","ColorJitter","RandomRotation","RandomAffine","Grayscale","RandomGrayscale","RandomPerspective","RandomErasing","GaussianBlur","InterpolationMode","RandomInvert","RandomPosterize","RandomSolarize","RandomAdjustSharpness","RandomAutocontrast","RandomEqualize","ElasticTransform",
]
使用
- NT
- 关注输入和输出类型
- 多看官方文档(可以进源码去看)
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformswriter = SummaryWriter('logs')
img = Image.open('./dataset2/train/ants_image/5650366_e22b7e1065.jpg')
print(img)# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img) # 将PIL对象转换为tensor对象
writer.add_image("tensor_img",img_tensor)# Normalize 归一化:(输入-均值)/标准差
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5]) # 要提供一个均值一个标准差
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("norm_img",img_norm)# Resize 调整尺寸:(h,w)
print(img.size)
trans_resize = transforms.Resize((512,512))# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img) # 这里要传入的是PIL image类型# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
print(img_resize)# Compose - resize 第二种用法: 等比缩放
trans_resize_2 = transforms.Resize(512)# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor]) # 从右往左执行,后面参数的输入和前面参数的输出是一致的
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)# RandomCrop 随机裁剪
trans_random = transforms.RandomCrop(256) # 传一个int:代表正方形,传一个tuple:代表矩形
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop", img_crop, i)writer.close()
进入调试,就会发现tensor_img中有一些反向传播的钩子:

以及使用的设备:

可以理解为tensor类型包含了神经网络训练所需要的一些参数
其他
类中的__call__方法:对象可以直接用括号时自动用的该方法(区别于普通方法需要用“.”调用)
class Person:def __call__(self, name):print("__call__:", name)def hello(self, name):print("hello",name)p = Person()
p("jerry")
p.hello('tom')相关文章:
[pytorch入门] 3. torchvision中的transforms
torchvision中的transforms 是transforms.py工具箱,含有totensor、resize等工具 用于将特定格式的图片转换为想要的图片的结果,即用于图片变换 用法 在transforms中选择一个类创建对象,使用这个对象选择相应方法进行处理 能够选择的类 列…...
WINCC读写EXCEL-VBS
原创 RENHQ WINCC 关于VBS操作EXCEL的文档不管在论坛上还是在网上,相关的脚本已经很多,但是依然有很多人在问这个问题,于是把我以前在论坛上发的一个集合帖子的脚本拿来,重新开个帖子,如果再有人问的话,可…...
Python os模块
简介 Python的os模块是一个标准库模块,用于提供与操作系统相关的功能(相当于接口)。os模块允许Python程序与文件系统、目录结构、进程管理等操作系统级别的功能进行交互。 主要功能 文件和目录操作 创建、删除、重命名文件和目录…...
Elasticsearch:2023 年 Lucene 领域发生了什么?
作者:来自 Elastic Adrien Grand 2023 年刚刚结束,又是 Apache Lucene 开发活跃的一年。 让我们花点时间回顾一下去年的亮点。 社区 2023 年,有: 5 个次要版本(9.5、9.6、9.7、9.8 和 9.9),1 …...
Java算法 leetcode简单刷题记录4
Java算法 leetcode简单刷题记录4 买卖股票的最佳时机: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ 笨办法: 记录当天的值及之后的最大值,相减得到利润; 所有的天都计算下,比较得到利润最大值&…...
opencv#27模板匹配
图像模板匹配原理 例如给定一张图片,如上图大矩阵所示,然后给定一张模板图像,如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域,…...
【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
1.介绍 Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Swin-Unet:用于医学图像分割的类Unet纯Transformer 2022年发表在 Computer Vision – ECCV 2022 Workshops Paper Code 2.摘要 在过去的几年里,卷积神经网络ÿ…...
IS-IS:01 ISIS基本配置
这是实验拓扑,下面是基本配置: R1: sys sysname R1 user-interface console 0 idle-timeout 0 0 int loop 0 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 qR2: sys sysname R2 user-interface console 0 idle-timeout 0 0 int loop 0 ip add …...
基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测
目录 背影 极限学习机 基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测 主要参数 MATLAB代码 效果图 结果分析 展望 完整代码下载链接:基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测的MATLAB代码资源-CSDN…...
miniconda安装
Miniconda是一个小型版的Anaconda,它包含了一个包管理工具conda和Python。Miniconda适用于那些只需要管理Python包和环境,而不需要Anaconda中包含的大部分科学计算工具的用户。 Miniconda的安装过程相对简单。你可以从清华大学开源软件镜像站下载Minico…...
PHP判断访客是否手机端(移动端浏览器)访问的方法总结
PHP判断访客是否手机端、移动端、浏览器访问的方法总结 方法一:使用$_SERVER全局变量方法二:使用PHP的get_browser函数方法三:使用第三方库(Mobile Detect)方法四:使用WURFL设备数据库 方法一:使…...
vscode无法自动补全
前提:安装c/c插件 c/c插件功能非常强大,几乎能满足日常编码过程中常用的功能;因此也包含自动补全的功能,开启方法如下: 文件->首选项->设置: 扩展->c/c->Intellisense,找到Intell…...
深度学习记录--指数加权平均
指数加权移动平均(exponentially weighted moving averages) 如何对杂乱的数据进行拟合? 通过指数加权平均可以把数据图近似拟合成一条曲线 公式: 其中表示第t个平均数,表示第t-1个平均数,表示第t个数据,表示变化参数…...
如何生成图源二维码?
数据是GIS的血液。 自从苹果端与安卓端水经微图APP(简称“微图APP”)上线之后,有用户反馈图源比较少的问题。 其实,微图APP支持通过图源二维码添加自定义图源,而该二维码则可以通过微图Web版生成。 如何生成图源二维…...
PowerShell install 一键部署grafana
grafana 前言 Grafana 是一款开源的数据可视化和监控仪表盘工具。它提供了丰富的数据查询、可视化和报警功能,可用于实时监控、数据分析和故障排除等领域。 通过 Grafana,您可以连接到各种不同的数据源,包括时序数据库(如 Prometheus、InfluxDB)和关系型数据库(如 MySQ…...
笨蛋学设计模式行为型模式-解释器模式【23】
行为型模式-解释器模式 8.10解释器模式8.10.1概念8.10.2场景8.10.3优势 / 劣势8.10.4解释器模式可分为8.10.5解释器模式8.10.6实战8.10.6.1题目描述8.10.6.2输入描述8.10.6.3输出描述8.10.6.4代码 8.10.7总结 8.10解释器模式 8.10.1概念 解释器模式用于定义一个语言的文法…...
SAP ABAP SUBMIT常用用法
导语:一直对SUBMIT的用法模模糊糊,每次用都要去查询,本次痛下决心,腾出时间,梳理了一下,如果本文对你有帮助,点个赞再走~ 之前分享过SUBMIT调用程序获取内表的值,就不重…...
GitLab备份与恢复测试(基于Docker)
GitLab环境准备 docker run --name gitlab \ -p 2022:22 -p 2080:80 -p 2443:443 -d \ -v /opt/gitlab/config:/etc/gitlab \ -v /opt/gitlab/gitlab/logs:/var/log/gitlab \ -v /opt/gitlab/gitlab/data:/var/opt/gitlab \ gitlab/gitlab-ce:16.2.1-ce.0备份 1.修改配置文件…...
android studio开发的一些问题
1、编译后,输出日志乱码 Help-->Edit Custom VM Options...-->-Dfile.encodingUTF-8 2、编译时,出现:connect timed out 试过很多方法啦,都是不行的。最后我自己摸索出方法。 [1]android studio-->Project-->Grad…...
辞职对于我来说,不可避免(10)
人,从有辞职的想法,再到把辞职出口要多久,一天、一星期还是一个月 “别以为我不知道你搞了什么小动作,以后别瞎搞,不然我不客气”,从老板说出来这句话开始,这家公司我注定不可能再待下去。 我很诧异,小蔡刚离职,公司干活的技术就我一个,况且我也没哪里得罪你,你冒出…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
