[pytorch入门] 3. torchvision中的transforms
torchvision中的transforms
是transforms.py工具箱,含有totensor、resize等工具
用于将特定格式的图片转换为想要的图片的结果,即用于图片变换
用法
在transforms中选择一个类创建对象,使用这个对象选择相应方法进行处理
能够选择的类
列表
["Compose","ToTensor", # 转化为tensor类型"PILToTensor","ConvertImageDtype","ToPILImage", # tenor或ndarray转换为PIL image"Normalize", # 归一化(用均值或标准差归一化tensor类型的image)"Resize","CenterCrop","Pad","Lambda","RandomApply","RandomChoice","RandomOrder","RandomCrop","RandomHorizontalFlip","RandomVerticalFlip","RandomResizedCrop","FiveCrop","TenCrop","LinearTransformation","ColorJitter","RandomRotation","RandomAffine","Grayscale","RandomGrayscale","RandomPerspective","RandomErasing","GaussianBlur","InterpolationMode","RandomInvert","RandomPosterize","RandomSolarize","RandomAdjustSharpness","RandomAutocontrast","RandomEqualize","ElasticTransform",
]
使用
- NT
- 关注输入和输出类型
- 多看官方文档(可以进源码去看)
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformswriter = SummaryWriter('logs')
img = Image.open('./dataset2/train/ants_image/5650366_e22b7e1065.jpg')
print(img)# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img) # 将PIL对象转换为tensor对象
writer.add_image("tensor_img",img_tensor)# Normalize 归一化:(输入-均值)/标准差
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5]) # 要提供一个均值一个标准差
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("norm_img",img_norm)# Resize 调整尺寸:(h,w)
print(img.size)
trans_resize = transforms.Resize((512,512))# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img) # 这里要传入的是PIL image类型# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
print(img_resize)# Compose - resize 第二种用法: 等比缩放
trans_resize_2 = transforms.Resize(512)# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor]) # 从右往左执行,后面参数的输入和前面参数的输出是一致的
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)# RandomCrop 随机裁剪
trans_random = transforms.RandomCrop(256) # 传一个int:代表正方形,传一个tuple:代表矩形
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop", img_crop, i)writer.close()
进入调试,就会发现tensor_img中有一些反向传播的钩子:

以及使用的设备:

可以理解为tensor类型包含了神经网络训练所需要的一些参数
其他
类中的__call__方法:对象可以直接用括号时自动用的该方法(区别于普通方法需要用“.”调用)
class Person:def __call__(self, name):print("__call__:", name)def hello(self, name):print("hello",name)p = Person()
p("jerry")
p.hello('tom')相关文章:
[pytorch入门] 3. torchvision中的transforms
torchvision中的transforms 是transforms.py工具箱,含有totensor、resize等工具 用于将特定格式的图片转换为想要的图片的结果,即用于图片变换 用法 在transforms中选择一个类创建对象,使用这个对象选择相应方法进行处理 能够选择的类 列…...
WINCC读写EXCEL-VBS
原创 RENHQ WINCC 关于VBS操作EXCEL的文档不管在论坛上还是在网上,相关的脚本已经很多,但是依然有很多人在问这个问题,于是把我以前在论坛上发的一个集合帖子的脚本拿来,重新开个帖子,如果再有人问的话,可…...
Python os模块
简介 Python的os模块是一个标准库模块,用于提供与操作系统相关的功能(相当于接口)。os模块允许Python程序与文件系统、目录结构、进程管理等操作系统级别的功能进行交互。 主要功能 文件和目录操作 创建、删除、重命名文件和目录…...
Elasticsearch:2023 年 Lucene 领域发生了什么?
作者:来自 Elastic Adrien Grand 2023 年刚刚结束,又是 Apache Lucene 开发活跃的一年。 让我们花点时间回顾一下去年的亮点。 社区 2023 年,有: 5 个次要版本(9.5、9.6、9.7、9.8 和 9.9),1 …...
Java算法 leetcode简单刷题记录4
Java算法 leetcode简单刷题记录4 买卖股票的最佳时机: https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ 笨办法: 记录当天的值及之后的最大值,相减得到利润; 所有的天都计算下,比较得到利润最大值&…...
opencv#27模板匹配
图像模板匹配原理 例如给定一张图片,如上图大矩阵所示,然后给定一张模板图像,如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域,…...
【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
1.介绍 Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Swin-Unet:用于医学图像分割的类Unet纯Transformer 2022年发表在 Computer Vision – ECCV 2022 Workshops Paper Code 2.摘要 在过去的几年里,卷积神经网络ÿ…...
IS-IS:01 ISIS基本配置
这是实验拓扑,下面是基本配置: R1: sys sysname R1 user-interface console 0 idle-timeout 0 0 int loop 0 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 qR2: sys sysname R2 user-interface console 0 idle-timeout 0 0 int loop 0 ip add …...
基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测
目录 背影 极限学习机 基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测 主要参数 MATLAB代码 效果图 结果分析 展望 完整代码下载链接:基于极限学习机的曲线分类,基于极限学习机的光谱分类,基于极限学习机的分类预测的MATLAB代码资源-CSDN…...
miniconda安装
Miniconda是一个小型版的Anaconda,它包含了一个包管理工具conda和Python。Miniconda适用于那些只需要管理Python包和环境,而不需要Anaconda中包含的大部分科学计算工具的用户。 Miniconda的安装过程相对简单。你可以从清华大学开源软件镜像站下载Minico…...
PHP判断访客是否手机端(移动端浏览器)访问的方法总结
PHP判断访客是否手机端、移动端、浏览器访问的方法总结 方法一:使用$_SERVER全局变量方法二:使用PHP的get_browser函数方法三:使用第三方库(Mobile Detect)方法四:使用WURFL设备数据库 方法一:使…...
vscode无法自动补全
前提:安装c/c插件 c/c插件功能非常强大,几乎能满足日常编码过程中常用的功能;因此也包含自动补全的功能,开启方法如下: 文件->首选项->设置: 扩展->c/c->Intellisense,找到Intell…...
深度学习记录--指数加权平均
指数加权移动平均(exponentially weighted moving averages) 如何对杂乱的数据进行拟合? 通过指数加权平均可以把数据图近似拟合成一条曲线 公式: 其中表示第t个平均数,表示第t-1个平均数,表示第t个数据,表示变化参数…...
如何生成图源二维码?
数据是GIS的血液。 自从苹果端与安卓端水经微图APP(简称“微图APP”)上线之后,有用户反馈图源比较少的问题。 其实,微图APP支持通过图源二维码添加自定义图源,而该二维码则可以通过微图Web版生成。 如何生成图源二维…...
PowerShell install 一键部署grafana
grafana 前言 Grafana 是一款开源的数据可视化和监控仪表盘工具。它提供了丰富的数据查询、可视化和报警功能,可用于实时监控、数据分析和故障排除等领域。 通过 Grafana,您可以连接到各种不同的数据源,包括时序数据库(如 Prometheus、InfluxDB)和关系型数据库(如 MySQ…...
笨蛋学设计模式行为型模式-解释器模式【23】
行为型模式-解释器模式 8.10解释器模式8.10.1概念8.10.2场景8.10.3优势 / 劣势8.10.4解释器模式可分为8.10.5解释器模式8.10.6实战8.10.6.1题目描述8.10.6.2输入描述8.10.6.3输出描述8.10.6.4代码 8.10.7总结 8.10解释器模式 8.10.1概念 解释器模式用于定义一个语言的文法…...
SAP ABAP SUBMIT常用用法
导语:一直对SUBMIT的用法模模糊糊,每次用都要去查询,本次痛下决心,腾出时间,梳理了一下,如果本文对你有帮助,点个赞再走~ 之前分享过SUBMIT调用程序获取内表的值,就不重…...
GitLab备份与恢复测试(基于Docker)
GitLab环境准备 docker run --name gitlab \ -p 2022:22 -p 2080:80 -p 2443:443 -d \ -v /opt/gitlab/config:/etc/gitlab \ -v /opt/gitlab/gitlab/logs:/var/log/gitlab \ -v /opt/gitlab/gitlab/data:/var/opt/gitlab \ gitlab/gitlab-ce:16.2.1-ce.0备份 1.修改配置文件…...
android studio开发的一些问题
1、编译后,输出日志乱码 Help-->Edit Custom VM Options...-->-Dfile.encodingUTF-8 2、编译时,出现:connect timed out 试过很多方法啦,都是不行的。最后我自己摸索出方法。 [1]android studio-->Project-->Grad…...
辞职对于我来说,不可避免(10)
人,从有辞职的想法,再到把辞职出口要多久,一天、一星期还是一个月 “别以为我不知道你搞了什么小动作,以后别瞎搞,不然我不客气”,从老板说出来这句话开始,这家公司我注定不可能再待下去。 我很诧异,小蔡刚离职,公司干活的技术就我一个,况且我也没哪里得罪你,你冒出…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
