【强化学习】QAC、A2C、A3C学习笔记
强化学习算法:QAC vs A2C vs A3C
引言
经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低、高方差、收敛性差、难以处理高维离散空间。
为了克服这些限制,研究者们引入了Actor-Critic框架,它结合了价值函数和策略梯度方法的优点(适配连续动作空间和随机策略),旨在提升学习效率和稳定性。
QAC(Quality Actor-Critic)
实现原理
QAC算法通过结合Actor-Critic架构的优势,实现了策略和价值函数的有效融合。在此框架中,Actor基于策略梯度法选择动作,而Critic组件评估这些动作的价值,以指导Actor的策略更新。

由图可知,在Actor-Critic算法中,TD Error用于更新Critic的价值函数,也用来指导Actor的策略梯度更新。简单来说,如果TD Error较大,意味着当前策略对于该状态-动作对的价值预测不准确,需要更大的调整。
优势与局限
QAC的主要优势在于其将策略探索与价值评估相结合,旨在提升决策质量与学习速度。然而,由于依赖样本来更新策略,它可能会面临高方差问题,尤其是在样本数量较少或者环境噪声较大的情况下。 这要求在实际应用中进行适当的调整和优化,以实现最佳性能。
A2C(Advantage Actor-Critic)
实现原理
A2C通过引入advantage函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),来指导策略更新。这个函数评估执行某个动作相比平均水平好多少,旨在减少方差并提高策略的学习效率。
优势与局限
A2C的同步框架减少了策略更新中的噪声,提升了学习稳定性。作为on-policy算法,它直接在策略路径上进行更新,保证了策略的一致性。
好像基本上能搜的资料都没有说这个方法的局限。
从经验上看,这个方法的样本利用率不高(会比DQN还要难收敛一点),而且对超参数敏感(这算是强化学习的通病了)。
A3C(Asynchronous Advantage Actor-Critic)
实现原理
A3C通过多个并行的Actor-Critic实例进行学习,这些实例独立探索并异步更新主策略。每个实例有自己的环境副本,降低了策略更新中的相关性。

优势与局限
A3C的异步更新可以在多个环境副本上并行处理,加快学习速度,同时保持了策略的多样性。
但是这就要看你的计算资源够不够了🤣
小结(比较)
- QAC:一种基本的Actor-Critic方法,通过Q值来指导策略的更新。
- A2C:利用advantage function代替Q值,减少了方差并可能加速了学习过程。它通常在一个单一的环境中运行,这意味着它在更新策略时会等待每一步都完成。
- A3C:在A2C的基础上添加异步执行,允许多个agents并行探索和学习,这样不同的agent可以探索不同的策略空间,增加样本的多样性并加速学习过程。
A2C和A3C的核心区别在于A3C的异步更新机制,它允许并行处理多个环境实例,从而提高了算法的效率和鲁棒性。而QAC则为这些更先进的算法提供了基础框架。在实际应用中,选择哪种算法取决于计算资源、环境的复杂度以及所需的学习效率。
A2C提供了同步更新的稳定性,而A3C通过异步更新增加了学习效率。
两者都采用了advantage函数改善策略梯度,但A3C在多核心或多处理器系统上更具优势。
最后的问答
- 相比REINFORCE算法,为什么A2C可以提升速度?
A2C增加了Critic组件用于估计状态价值,这样Actor可以利用Critic提供的价值信息来更新策略,使得学习过程更加高效。
- A2C、A3C是on-policy的吗?
A2C算法是on-policy的,因为它根据当前策略生成的样本来更新这个策略,这意味着它评估和改进的是同一个策略。
A3C算法虽然采用了异步的更新机制,但它本质上仍然是on-policy的。尽管这些更新是异步发生的,但每个actor的策略更新都是基于其自身的经验,而这些经验是根据各自的当前策略产生的。
PS:后面有个最大熵的Soft Acotr Critic,这个就是off-policy。
参考资料
joyrl-book 第 10 章 Actor-Critic 算法
相关文章:
【强化学习】QAC、A2C、A3C学习笔记
强化学习算法:QAC vs A2C vs A3C 引言 经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低、高方差、收敛性差、难以处理高维离散空间。 为…...
android usb2.0 协议基础(2)
2.4 USB逻辑部件 USB 逻辑部件 设备---》 接口 (一个或多个):用于描述特定功能,包含多个端点----》端点(一个或多个): 传输的最终对象端点号,传输类型传输方向,最大的数据…...
C语言快速排序(非递归)图文详解
前言: 上一期分析了快速排序的三种写法,这三种写法有一个相同点,都是采用递归形式来实现的,那么有没有非递归的方法实现呢?答案是当然有,用非递归的方法实现快速排序,其实可以借助数据结构中的栈…...
Java面试题136-150
36、用JDBC如何调用存储过程 代码如下: package com.huawei.interview.lym; import java.sql.CallableStatement; import java.sql.Connection; import java.sql.DriverManager; import java.sql.SQLException; import java.sql.Types; public class JdbcTest…...
使用trace工具分析Mysql如何选择索引
背景说明 工作中,可能会遇到执行一个SQL,明明有索引,但是采用explain分析后发现执行结果并未走索引。甚至还有部分SQL语句相同就只是查询条件不一样也会出现有的走索引,有的不走索引情况。比如: 我的示例环境有个employees表,并有个idx_name_age_position的联合索引…...
微信小程序(十二)在线图标与字体的获取与引入
注释很详细,直接上代码 上一篇 新增内容: 1.从IconFont获取图标与文字的样式链接 2.将在线图标配置进页面中(源码) 3.将字体配置进页面文字中(源码) 4.css样式的多文件导入 获取链接 1.获取图标链接 登入…...
分类预测 | Matlab实现LSTM-Attention-Adaboost基于长短期记忆网络融合注意力机制的Adaboost数据分类预测/故障识别
分类预测 | Matlab实现LSTM-Attention-Adaboost基于长短期记忆网络融合注意力机制的Adaboost数据分类预测/故障识别 目录 分类预测 | Matlab实现LSTM-Attention-Adaboost基于长短期记忆网络融合注意力机制的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类…...
java web mvc-04-Apache Wicket
拓展阅读 Spring Web MVC-00-重学 mvc mvc-01-Model-View-Controller 概览 web mvc-03-JFinal web mvc-04-Apache Wicket web mvc-05-JSF JavaServer Faces web mvc-06-play framework intro web mvc-07-Vaadin web mvc-08-Grails 开源 The jdbc pool for java.(java …...
暴力破解常见的服务器
目录 使用 pydictor 生成自己的字典工具liunx下载使用常用的参数说明插件型字典 (可自己根据 API 文档开发) 使用 hydra 工具在线破解系统用户密码使用 hydra 破解 windows 7 远程桌面密码使用 hydra 工具破解 ssh 服务 root 用户密码 使用 Medusa 工具在线破解medusa参数说明M…...
运行Navicat转储的数据库SQL文件失败
报错:1067 - Invalid default value for ‘publish_date’ 单独拎出来该建表语句执行,报错一样,都是默认值出错 查看该字段的设计语句 publish_date timestamp NOT NULL DEFAULT 0000-00-00 00:00:00 COMMENT 发布时间, 发现该字段的默认值…...
动静态库的理解、制作、使用。
一.动静态库的理解。 1.什么是库? 代码是无穷无尽的,当程序猿在写一些项目时,未必所有代码亲历亲为,他们可以在网上寻找大佬写过的一些有关需求的代码,这些代码可以让他们拿过来直接使用,而省去了许多精力…...
【趣味游戏-08】20240123点兵点将点到谁就是谁(列表倒置reverse)
背景需求: 上个月,看到大4班一个孩子在玩“点兵点将点到谁就是谁”的小游戏,他在桌上摆放两排奥特曼卡片,然后点着数“点兵点将点到谁就是谁”,第10次点击的卡片,拿起来与同伴的卡片进行交换。他是从第一排…...
cherry键盘alt+tab无法切换窗口的问题解决
现象: alt 好用, tab好用,tabalt不好用。 原因: 键盘误触了关闭了alttab的功能。 不同的樱桃键盘可能方法不一样,下面是两个方案,本人的键盘是MX6.0 G80 3930红轴,用的方法一解决就了&#…...
「nuxt2配置tailwindcss」nuxt2添加tailwindcss详细步骤!解决版本不对称各种报错~~
运行环境 node和npm使用版本 node v14.21.3 (npm v6.14.18) 1.插件下载 官方文档说明 npm install -D nuxtjs/tailwindcss3.4.3 tailwindcss3.4.1 postcss^8.4.33 autoprefixer10.4.17 2.nuxt.config.js配置 module.exports {// ...buildModules: [nuxtjs/tailwindcss],// …...
1、中级机器学习课程简介
文章目录 1、课程简介2、先决条件 本课程所需数据集夸克网盘下载链接:https://pan.quark.cn/s/9b4e9a1246b2 提取码:uDzP 1、课程简介 欢迎来到机器学习中级课程! 如果你对机器学习有一些基础,并且希望学习如何快速提高模型质量…...
Mybtisplus对时间字段进行自动填充
一、引入依赖 <!-- mybatis-plus-boot-starter--><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.2</version></dependency> 二、配置类 这里我…...
[HTML]Web前端开发技术12(HTML5、CSS3、JavaScript )——喵喵画网页
希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…...
音频特效SDK,满足内容生产的音频处理需求
美摄科技,作为音频处理技术的佼佼者,推出的音频特效SDK,旨在满足企业内容生产中的音频处理需求。这款SDK内置多种常见音频处理功能,如音频变声、均衡器、淡入淡出、音频变调等,帮助企业轻松应对各种音频处理挑战。 一…...
使用vue2写一个太极图,并且点击旋转
下面是我自己写的一个代码,命名有些不规范,大家不要介意。 <template><div class"qq"><div class"app" :style"{ transform: rotateStyle }"><div class"app1"><div class"ap…...
张量计算和操作
一、数据操作 1、基础 import torchx torch.arange(12) # x:tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])x.shape # torch.Size([12])x.numel() # 12x x.reshape(3, 4) # tensor([[ 0, 1, 2, 3], # [ 4, 5, 6, 7], # [ 8, 9, 10, 11]])torch.zeros((2…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
