vector讲解
在学习玩string后我们开始学习vector,本篇博客将对vector进行简单的介绍,还会对vector一些常用的函数进行讲解
vector的介绍
实际上vector就是一个数组的数据结构,但是vector是由C++编写而成的,他和数组也有本质上的区别,但也有相同点,他的特征概括如下:
- vector是表示可变大小数组的序列容器。
- 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
- 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
- vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
- 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
- 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。
对于C语言中的数组,二者有很多的异同点,我将其概括如下:
相同点:
1 二者都是采用连续的空间来存储元素
2 二者都能通过下标进行访问
不同点:
1 vector是采用动态开辟,容器大小可以动态改变,并且是自动处理
2vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大
vector的使用
vector的定义
vector的定义就差不多是初始化以及拷贝构造和构造,这些在之前的string类函数讲解中也提到了,其实都大差不差的

构造并初始化:
第一个参数是你要初始化元素的个数,第二个参数是你要初始化成的字符
这里需要注意**<>里面就是你要放入vector里元素的类型**
vector<int> v(10, 1);
for (auto ch : v)
{cout << ch;
}
cout << endl;

拷贝构造:
其实都大差不差,学习了前面的string和类和对象后都很简单了
vector<int> v(10, 1);vector<int> v1(v);for (auto ch : v1){cout << ch;}cout << endl;

vector iterator 的使用
迭代器很常用,咱们做个简单的讲解

迭代器同样地分为正向和反向:
我们可以通过一个简单的代码来了解迭代器的使用
vector<int> v;
for (int i = 1; i <= 5; i++)
{v.push_back(i);
}
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;

下面为反向迭代器:
反向迭代器记得加上reverse
vector<int> v;
for (int i = 1; i <= 5; i++)
{v.push_back(i);
}
for (vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); it++)
{cout<< ' ' << *it;
}
cout << endl;

关于begin和rbegin,end和rend的位置的关系如下图所示,我们要记得,两种迭代器都是从begin开始遍历:
通过这张图,我们需要注意到一个很重要的点:
迭代器的区间都是左闭右开的!所以end是在最后一个元素的后一个位置!

vector 空间增长问题

其实空间增长问题我在之前的string类就有提到过,都是有规律可循的:
1 capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。vector增容都是2倍,具体增长多少是根据具体的需求定义
2 reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
3 resize在开空间的同时还会进行初始化,影响size
可以看到,resize默认就是初始化为0:
同时改变了capacity和size

而reserve只改变了capacity,并且不会有初始化的功能:
vector<int> v;
v.reserve(10);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;
cout << "former:" << endl;
cout << v.size() << endl;
cout << v.capacity() << endl;
v.reserve(20);
cout << endl;
cout << "after:" << endl;
cout << v.size() << endl;
cout << v.capacity() << endl;

vector 增删查改

pushback尾插和popback尾删:
都很简单,拿一段简单的代码来演示一下吧:
vector<int> v;
v.resize(10,1);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;
v.push_back(2);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout << ' ' << *it;
}
cout << endl;
v.pop_back();
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout << ' ' << *it;
}
cout << endl;

insert插入函数:
这里如果需要在其他地方插入就在begin上进行+操作
vector<int> v;
v.resize(10,1);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;
vector<int>::iterator it = v.begin();
v.insert(it, 3);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout << ' ' << *it;
}
cout << endl;

erase函数:
erase函数可以根据下标索引来删除元素,但是再insert后要重新给下标赋值,insert前的下标i已经失效了,其实这就是所说的:迭代器失效问题!
在这里我们插入了元素后会发生扩容,原空间可能已经被释放了(或者说如果erase删除了最后一个位置的元素,vector里已经没有元素可以删除,也会导致迭代器失效),但是erase后我们又使用it打印,这里的it可能使用的就是原空间,程序就会发生崩溃,所以我们需要在执行完insert后再次对it进行赋值,不然就会发生这种情况(但是一些编译器对于迭代器失效没有过于严格的检查,所以程序不会崩溃,但是程序输出的结果不对):
erase函数返回的是在vector对象中删除元素的后一个元素的指针!

通常解决迭代器失效最简单的方法就是:
对迭代器重新赋值
vector<int> v;
v.resize(10,1);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;
vector<int>::iterator i = v.begin();
v.insert(i+3, 3);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout << ' ' << *it;
}
cout << endl;
i = v.begin();
v.erase(i+3);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{cout << ' ' << *it;
}
cout << endl;

swap函数:
我们通过一段简单的代码来了解一下:
我们交换前打印两个vector对象中的元素,交换后再打印一次
vector<int> v1;
v1.resize(10,1);
cout << "交换前" << endl;
cout << "v1:";
for (vector<int>::iterator it = v1.begin(); it != v1.end(); it++)
{cout<< ' ' << *it;
}
cout << endl;
vector<int> v2;
v2.resize(10, 2);
cout << "v2:";
for (vector<int>::iterator it = v2.begin(); it != v2.end(); it++)
{cout << ' ' << *it;
}
cout << endl;
v1.swap(v2);
cout << "交换后" << endl;
cout << "v1:";
for (vector<int>::iterator it = v1.begin(); it != v1.end(); it++)
{cout << ' ' << *it;
}
cout << endl;
cout << "v2:";
for (vector<int>::iterator it = v2.begin(); it != v2.end(); it++)
{cout << ' ' << *it;
}
cout << endl;

好了,今天的分享到这里就结束了,谢谢大家的支持!
相关文章:
vector讲解
在学习玩string后我们开始学习vector,本篇博客将对vector进行简单的介绍,还会对vector一些常用的函数进行讲解 vector的介绍 实际上vector就是一个数组的数据结构,但是vector是由C编写而成的,他和数组也有本质上的区别ÿ…...
nvm 配置淘宝镜像失效,以及安装node后 npm-v 无效
win11 nvm版本 1.1.4 和1.1.7和1.1.12(目前最新版本24年 一月二十三日) 以上nvm版本都会出现一下问题, 从https://github.com/coreybutler/nvm-windows/releases 下载nvm安装包如下图 傻瓜式安装后,不用去配置环境变量&#…...
【Android Gradle 插件】Gradle 基础配置 ④ ( Gradle Wrapper 配置作用 | Gradle 下载的依赖库存放位置 )
一、Gradle Wrapper 配置作用 gradle wrapperdistributionBaseGRADLE_USER_HOME distributionPathwrapper/dists distributionUrlhttps\://services.gradle.org/distributions/gradle-6.7.1-bin.zip zipStoreBaseGRADLE_USER_HOME zipStorePathwrapper/distsGradle Wrapper 配…...
Deepin_Ubuntu_查看树形目录结构(tree)
Linux系统(Deepin、Ubuntu)中,可以使用tree命令来查看树形目录结构,下面是一些示例: 查看当前目录的树形结构: tree查看指定目录的树形结构,例如/etc/X11/fonts目录: tree /etc/X…...
Java Excel分割成许多小文件
最近在处理excel,数据很多,需要将excel拆分成许多小块,并保留原来的格式,于是写了该算法,并能保留原来的样式,使用很简单: Sheet splitSheet ExcelUtil.split(sheet, 0, 20, 5, 8); 传入开始…...
【心得】java从CC1链入门CC链个人笔记
来劲了,感觉离真正的CTF又近了一步。 本文仅从一个萌新的角度去谈,如有纰漏,纯属蒟蒻。 目录 CC链概念 CC链学习前置知识 CC1链 Version1 Version2 Version3 CC链概念 CC链 Commons Collections apache组织发布的开源库 里面主要对…...
Django migration 新增外键的坑
TL;DR 永远不要相信 makemigrations! migrate 之前一定好好看看 migrate 了啥东西,必要时手动修改生成的 migrate 文件。 最好把db的更新与服务代码更新解耦 场景 先描述下场景: 现在有两个表,一个是 question,一…...
相关系数(皮尔逊相关系数和斯皮尔曼相关系数)
本文借鉴了数学建模清风老师的课件与思路,可以点击查看链接查看清风老师视频讲解:5.1 对数据进行描述性统计以及皮尔逊相关系数的计算方法_哔哩哔哩_bilibili 注:直接先看 ( 三、两个相关系数系数的比较 ) 部分&#x…...
了解 Vite 插件
众所周知 Vite 是基于 Rollup 的构建工具,Vite 插件为了优化、扩展项目构建系统功能的工具。 比如 vite-plugin-eslint 为我们提供了代码分析的功能,帮助我们在开发过程中的风格一致性。 简单示例 本文中的示例是基于 Vite Vue3.x TypeScript 来实现…...
算法竞赛基础:C++双向链表的结构和实现(普通链表、List、静态链表)
算法竞赛基础:双向链表 本文将会介绍在算法竞赛中双向链表的几种使用方式,适合有一定基础的人阅读。 双向链表的结构 一般来说,普通的链表结构是这样的: struct node {int num;node *next; }next指针指向下一个链表ÿ…...
openssl3.2/test/certs - 019 - ca-nonca trust variants: +serverAuth, +anyEKU
文章目录 openssl3.2/test/certs - 019 - ca-nonca trust variants: serverAuth, anyEKU概述笔记 ca-nonca.pem from exp 016openssl3.2/test/certs - 019 - ca-nonca trust variants: serverAuth, anyEKUEND openssl3.2/test/certs - 019 - ca-nonca trust variants: serverAu…...
Unity SRP 管线【第五讲:URP烘培光照】
本节,我们将跟随数据流向讲解UEP管线中的烘培光照。 文章目录 一、URP烘培光照1. 搭建场景2. 烘培光照参数设置MixedLight光照设置:直观感受 Lightmapping Settings参数设置: 3. 我们如何记录次表面光源颜色首先我们提取出相关URP代码&#…...
Mysql运维篇(一) 日志类型
一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人,如有侵权请留言,我及时删除。 一、mysql相关日志 首先,我们能接触到的,一般我们排查慢查询时,会去看慢查询日志。如果做过数据备份会恢复的,可能接触或用过BinLog。那还有其他的吗?对MySQL原理…...
【C语言】结构体与内存操作函数 总结
结构体 一、结构体简介 C 语言内置的数据类型,除了最基本的几种原始类型,只有数组属于复合类型,可以同时包含多个值,但是只能包含相同类型的数据,实际使用中并不够用。 实际使用中,主要有下面两种情况&a…...
第12章_集合框架(Collection接口,Iterator接口,List,Set,Map,Collections工具类)
文章目录 第12章_集合框架本章专题与脉络1. 集合框架概述1.1 生活中的容器1.2 数组的特点与弊端1.3 Java集合框架体系1.4 集合的使用场景 2. Collection接口及方法2.1 添加2.2 判断2.3 删除2.4 其它 3. Iterator(迭代器)接口3.1 Iterator接口3.2 迭代器的执行原理3.3 foreach循…...
C语言进阶——数据结构之链表(续)
前言 hello,大家好呀,我是Humble,本篇博客承接之前的C语言进阶——数据结构之链表 的内容(没看过的小伙伴可以从我创建的专栏C语言进阶之数据结构 找到那篇文章并阅读后在回来哦~),上次我们重点说了链表中…...
数据库课程设计-图书管理系统数据库设计
目录 一、实验目的 二、实验内容 三、实验要求 四、实验设计 4.1需求分析 4.1.1系统目标 4.1.2功能需求 4.1.3性能需求 4.14界面需求 4.2概念模型设计 4.2.1 实体及联系 4.2.2 E-R图 4.3 逻辑设计 4.3.1 E-R模型向关系模型的转换 4.3.2 数据库逻辑结构 4.3.3数据库模型函数依赖…...
【超简版,代码可用!】【0基础Python爬虫入门——下载歌曲/视频】
安装第三方模块— requests 完成图片操作后输入:pip install requests 科普: get:公开数据 post:加密 ,个人信息 进入某音乐网页,打开开发者工具F12 选择网络,再选择—>媒体——>获取URL【先完成刷新页面】 科…...
CommunityToolkit.Mvvm支持环境
引言 CommunityToolkit.Mvvm 包(又名 MVVM 工具包,以前称为 Microsoft.Toolkit.Mvvm)是一个现代、快速和模块化的 MVVM 库。 它是 .NET 社区工具包的一部分,其中一条原则是: 独立于平台和运行时 - .NET Standard 2.0…...
探讨品牌设计的本质,为企业形象注入活力!
品牌设计作为一个行业,首先需要明确行业的本质和意义。由于越来越多的咨询公司和营销公司对品牌有不同的理解和解释,因为他们服务的内容和专业水平不同,什么是品牌的定义越来越复杂,逐渐成为一种神秘的知识。例如,特劳…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
