当前位置: 首页 > news >正文

【异或哈希】CF855 div3 F

感觉这道题跟之前有一题特别像,都是异或哈希

感觉这种题应该很典,记录一下

(66条消息) Codeforces Round #841 (Div. 2) and Divide by Zero【异或差分+动态map维护】 2022 C. Even Subarrays_lamentropetion的博客-CSDN博客

Problem - F - Codeforces

题意:

给你n个字符串,求对 (i, j) 的数量,使得

c[i] = s[i] + s[j] (两个字符串串联起来)

1.c[i]的长度为奇数

2. c[i] 所包含的字符种类恰好是 25 个

3. c[i] 所包含的每种字符的出现次数都为奇数

思路:

首先,目标状态是不确定的,不知道目标状态少哪个字符,因此我们去枚举少了哪个字符

当2和3都满足时,1一定满足

确定完目标状态之后,注意到我们要去n^2枚举两个指针,那么按照套路的做法,我们去枚举其中一个指针,然后去考虑限定条件来得到另一个指针

它的限定条件和全局的哈希有关,因此我们去维护全局的哈希

那么,全局的哈希去维护什么值呢?很明显是去维护每个字符是否出现以及每个字符的出现次数的奇偶性

a[i]表示每个字符串中每个字符是否出现,b[i]表示每个字符串中字符的出现次数的奇偶性

所以在枚举之前,可以先去预处理这两个哈希

考虑去枚举i,确定了两个字符串连起来的状态,我们怎么去确定j

即s[j]的限定条件是什么

  1. 每种字符出现次数为奇数

  1. s[i]和s[j]的字符种类加起来必须有25种

假设 s[i] 对应的 b[i] 是 k,和法的 c[i] 对应的 b[i] 是 q, s[j] 对应的 b[j] 是 p,那 s[i] + s[j] 对应的 b[i] 其实就是 k^p

因此直接去维护动态map就能计数出所有满足条件的对数

当然不能忘记清空cnt数组

Code:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <map>
#include <queue>
#include <set>
//#define int long long
using namespace std;
using i64 = long long;
const int mxn=1e6+10;
const int mxe=1e6+10;
const int mod=1e9+7;string s;
int n;
int a[mxn],b[mxn],cnt[1<<26];
void solve(){s.clear();memset(a,0,sizeof(a));memset(b,0,sizeof(b));memset(cnt,0,sizeof(cnt));cin>>n;for(int i=1;i<=n;i++){cin>>s;for(int j=0;j<s.size();j++){a[i]|=(1<<(s[j]-'a'));b[i]^=(1<<(s[j]-'a'));}}i64 ans=0;for(int i=0;i<26;i++){int S=(1<<26)-1-(1<<i);for(int j=1;j<=n;j++){if(!((a[j]>>i)&1)){cnt[b[j]]++;ans+=cnt[S^b[j]];}}for(int j=1;j<=n;j++){if(!((a[j]>>i)&1)){cnt[b[j]]--;}}}cout<<ans<<'\n';
}
signed main(){ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int __=1;//cin>>__;while(__--)solve();return 0;
}

相关文章:

【异或哈希】CF855 div3 F

感觉这道题跟之前有一题特别像&#xff0c;都是异或哈希感觉这种题应该很典&#xff0c;记录一下(66条消息) Codeforces Round #841 (Div. 2) and Divide by Zero【异或差分动态map维护】 2022 C. Even Subarrays_lamentropetion的博客-CSDN博客Problem - F - Codeforces题意&a…...

深度学习|改进两阶段鲁棒优化算法i-ccg

目录 1 主要内容 2 改进算法 2.1 CC&G算法的优势 2.2 i-CCG算法简介 3 结果对比 1 主要内容 自从2013年的求解两阶段鲁棒优化模型的列和约束生成算法&#xff08;CC&G&#xff09;被提出之后&#xff0c;基本没有实质性的创新&#xff0c;都是围绕该算法在各个领…...

C++11轻松打印本地时间

C11之前&#xff0c;想要获取时间并对其打印是有些困难的&#xff0c;因为C并没有标准时间库。想要对时间进行统计就需要调用C库&#xff0c;并且我们要考虑这样的调用是否能很好的封装到我们的类中。 C11之后&#xff0c;STL提供了 chrono 库&#xff0c;其让对时间的操作更加…...

Eureka - 总览

文章目录前言架构注册中心 Eureka Server服务提供者 Eureka Client服务消费者 Eureka Client总结资源前言 微服务&#xff08;Microservices&#xff0c;一种软件架构风格&#xff09;核心的组件包括注册中心&#xff0c;随着微服务的发展&#xff0c;出现了很多注册中心的解决…...

【算法设计-枚举、分治】素数、约数、质因数分解

文章目录1. 素数判定2. 素数筛选法3. 质因数分解4. 求一个数的约数5. 求两个数的最大公约数&#xff08;GCD&#xff09;6. 求两个数的最小公倍数&#xff08;LCM&#xff09;1. 素数判定 判定从 2 到sqrt(n)依次能否把 n 整除&#xff0c;若存在可以整除的数则说明 n 不是素数…...

【第十四届蓝桥杯】第三期模拟赛B组C++题解(待修正+持续更新-ing)

文章目录写在前面一、找最小数题目描述解题报告1、大体思路2、代码详解二、求列名题目描述解题报告1、大体思路2、代码详解三、求日期数题目描述解题报告1、大体思路2、代码详解四、取数题目描述解题报告1、大体思路2、代码详解五、最大连通分块题目描述解题报告1、大体思路2、…...

线程池和ThreadLocal详解

线程池和ThreadLocal详解线程池池化模式&#xff1a;线程池里的线程数量设定为多少比较合适?添加线程规则&#xff1a;实现原理&#xff1a;线程池实现任务复用的原理线程池状态&#xff1a;Executors 创线程池工具类手动创建&#xff08;更推荐&#xff09;&#xff1a;自动创…...

[深入理解SSD系列综述 1.7] SSD固态存储市场发展分析与预测_固态存储技术发展方向(2022to2023)

前言 自2020年疫情爆发以来,远程办公、网上教育、流媒体等等应用引爆对消费电子及云服务的需求增长,全球数字化转型加速,带来了两年的闪存风光时刻。然而,进入2022年,在俄乌冲突、疫情重燃、通胀上升等一系列事件冲击下,全球经济下行风险加剧,对智能手机、PC等科技产品的…...

【2021.12.25】ctf逆向中常见加密算法和编码识别

【2021.12.25】ctf逆向中常见加密算法和编码识别&#xff08;含exe及wp&#xff09; 文章目录【2021.12.25】ctf逆向中常见加密算法和编码识别&#xff08;含exe及wp&#xff09;0、前言1、基础加密手法2、base64&#xff08;1&#xff09;原理&#xff1a;&#xff08;2&#…...

【数据结构初阶】堆排序

目录 前言 概念 堆排序的实现 1.建堆 &#xff08;1&#xff09;堆向上调整算法 &#xff08;2&#xff09;堆的向下调整算法 2. 利用堆删除思想来进行排序 3.堆排序的时间复杂度 4.源码 总结 前言 前边我们学习了堆的实现&#xff0c;对堆的每个接口都进行了详细的讲…...

Day5: platformDriver-1

Platform Driver (1) Linux kernel中大部分设备可以归结为平台设备&#xff0c;因此大部分的驱动是平台驱动&#xff08;patform driver&#xff09; 什么是平台设备 平台设备是linux的设备模型中一类设备的抽象。 内核中的描述&#xff1a; Platform devices are devices t…...

开发手册——一、编程规约_7.控制语句

这篇文章主要梳理了在java的实际开发过程中的编程规范问题。本篇文章主要借鉴于《阿里巴巴java开发手册终极版》 下面我们一起来看一下吧。 1. 【强制】在一个 switch 块内&#xff0c;每个 case 要么通过 break / return 等来终止&#xff0c;要么注释说明程序将继续执行到哪…...

python每日学9 : windows上配置gitee的远程仓库,git的初步使用

在开发中&#xff0c;如果遇到复杂的项目&#xff0c;使用版本控制是非常有必要的&#xff0c;如果涉及到多端开发&#xff0c;那么还需要使用远程仓库。本文作个简单记录&#xff0c;记录下git初步使用。 1 下载与安装 git还有几个ui版本&#xff0c;但是开始使用的话&#…...

精确率与召回率,ROC曲线与PR曲线

精确率与召回率&#xff0c;ROC曲线与PR曲线 在机器学习的算法评估中&#xff0c;尤其是分类算法评估中&#xff0c;我们经常听到精确率(precision)与召回率(recall)&#xff0c;ROC曲线与PR曲线这些概念&#xff0c;那这些概念到底有什么用处呢&#xff1f; 首先&#xff0c…...

现代操作系统——Linux架构与学习

小白的疑惑 在我决定从事嵌入式&#xff08;应用层&#xff09;方面的工作时&#xff0c;我查询了大量资料该如何学习&#xff0c;几乎所有观点不约而同的都指向了学习好Linux&#xff0c;大部分工作都是在Linux环境下来进行工作的。于是我雄心勃勃的去下载Linux&#xff0c;可…...

中文代码82

PK 嘚釦 docProps/PK 嘚釦羸 r docProps/app.xml潙蚽?勶曻Q顗濔S? 錞礖剅D柍珘m?鳞?ぷ辷f硌?2?upc厭Y樐8 rU y搪m眾&a?珪?紓 玺鶋瑣襚? ?i嘲rN?布倖儇?攊橌??嚗猝)芻矂2吟腊K湞?CK臶>鸘\?ΔF滋齢q旮T?桀?;偉 A軥v蕯朾偤佷3?е…...

顺序表(一篇带你掌握顺序表)

目录 一、顺序表是什么 1.1 概念 1.2 分类 1.3 结构 二、顺序表的基本操作 2.1 前绪准备 2.2 初始化 2.3 扩容 2.5 尾插 2.6 打印 2.7 尾删 2.8 头插 2.9 头删 2.10 在pos位置插入 2.11 删除pos位置的数据 2.12 查找 三、完整代码 3.1 Test.c文件 3.2 SeqList.h…...

【SpringCloud】SpringCloud教程之Feign实战

目录前言SpringCloud Feign远程服务调用一.需求二.两个服务的yml配置和访问路径三.使用RestTemplate远程调用(order服务内编写)四.构建Feign(order服务内配置)五.自定义Feign配置(order服务内配置)六.Feign配置日志(oder服务内配置)七.Feign调优(order服务内配置)八.抽离Feign前…...

嵌入式linux必备内存泄露检测神器

Valgrind介绍 Valgrind是一个可移植的动态二进制分析工具集&#xff0c;主要用于发现程序中的内存泄漏、不合法内存访问、使用未初始化的内存、不正确的内存释放以及性能问题等&#xff0c;可在Linux和Mac OS X等平台上使用。 Valgrind由多个工具组成&#xff0c;其中最常用的…...

设计模式之行为型模式

四、行为型模式 行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务&#xff0c;它涉及算法与对象间职责的分配。 行为型模式分为类行为模式和对象行为模式&#xff0c;前者采用继承机制来在…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...