金融OCR领域实习日志(一)
一、OCR基础
任务要求:
工作原理
OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相)检查纸上打印的字符,经过检测暗、亮的模式肯定其形状,而后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并经过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。如何除错或利用辅助信息提升识别正确率,是OCR最重要的课题,ICR(Intelligent Character Recognition)的名词也随之产生。
一般技术流程为:
应用场景
根据OCR的应用场景而言,我们可以大致分成识别特定场景下的专用OCR以及识别多种场景下的通用OCR。就前者而言,证件识别以及车牌识别就是专用OCR的典型案例。针对特定场景进行设计、优化以达到最好的特定场景下的效果展示。那通用的OCR就是使用在更多、更复杂的场景下,拥有比较好的泛性。在这个过程中由于场景的不确定性,比如:图片背景极其丰富、亮度不均衡、光照不均衡、残缺遮挡、文字扭曲、字体多样等等问题,会带来极大的挑战。
**文档文字识别:**可以将图书馆、报社、博物馆、档案馆等的纸质版图书、报纸、杂志、历史文献档案资料等进行电子化管理,实现精准地保存文献资料。
**自然场景文字识别:**识别自然场景图像中的文字信息如车牌、广告干词、路牌等信息。对车辆进行识别可以实现停车场收费管理、交通流量控制指标测量、车辆定位、防盗、高速公路超速自动化监管等功能。
**票据文字识别:**可以对增值税发票、报销单、车票等不同格式的票据进行文字识别,可以避免财务人员手动输入大量票据信息,如今已广泛应用于财务管理、银行、金融等众多领域。
**证件识别:**可以快速识别身份证、银行卡、驾驶证等卡证类信息,将证件文字信息直接转换为可编辑文本,可以大大提高工作效率、减少人工成本、还可以实时进行相关人员的身份核验,以便安全管理。
以及金融领域具体应用场景:
**自动化文档处理:**通过OCR技术识别和提取文档关键信息后,利用关键信息进行文档分类、文档重命名、目录创建与归档工作
**发票识别:**文字检测+识别,根据发票内容信息特点提取所需的内容。
**合同分析:**通过OCR识别,智能结构化抽取合同关键信息,支持图片、PDF、word多种格式,可通过API接口传输至企业业务系统,协助企业工作人员完成自动填单、内容一致性检查,让合同审阅更高效。
★商业化方案及其优缺点
1.paddleOCR
飞桨首次开源文字识别模型套件PaddleOCR,目标是打造丰富、领先、实用的文本识别模型/工具库。最新开源的超轻量PP-OCRv3模型大小仅为16.2M。同时支持中英文识别;支持倾斜、竖排等多种方向文字识别;支持GPU、CPU预测;用户既可以通过PaddleHub很便捷的直接使用该超轻量模型,也可以使用PaddleOCR开源套件训练自己的超轻量模型。
-
优点
-
轻量模型,执行速度快
-
支持pip直接安装
-
ocr识别效果好,效果基本可以比肩大厂收费ocr(非高精版)
-
支持表格和方向识别
-
支持补充训练且很方便
-
-
缺点
-
部分符号识别效果一般,如 '|‘识别为’1’
-
对于部分加粗字体可能出现误识别,需要自己补充训练
-
偶尔会出现部分内容丢失的情况
-
源文档配套教程:安装使用说明
2.CnOCR
CnOCR 是 Python 3 下的文字识别(Optical Character Recognition,简称OCR)工具包,支持简体中文、繁体中文(部分模型)、英文和数字的常见字符识别,支持竖排文字的识别。自带了20+个训练好的识别模型,适用于不同应用场景,安装后即可直接使用。同时,CnOCR也提供简单的训练命令供使用者训练自己的模型。
- 优点
- 轻量模型,执行速度快,速度略快于paddle ocr
- 支持pip直接安装
- ocr识别效果好,识别效果比肩paddle ocr
- 支持训练自己的模型
- 缺点
- 部分符号识别效果差
- 部分场景下会出现空格丢失情况
- 模型补充训练没有paddle ocr方便
源文档配套教程:安装使用说明
3.chinese_lite OCR
超轻量级中文 ocr,支持竖排文字识别, 支持 ncnn、mnn、tnn 推理, 模型大小仅4.7M。
-
优点
-
轻量模型,执行速度快,速度优于CnOCR和Paddle OCR
-
ocr识别效果尚可,优于一般开源模型,但比不上CnOCR和Paddle OCR
-
作者提供了多种语言下的Demo
-
-
缺点
- 不支持pip安装
- 文本位置识别略差
- 不支持补充训练
- 类手写字体识别效果一般
- 部分场景下会出现误识别竖版文字的情况
例如:
姓 名: 张三
性 别: 男
年 龄: 19
户 籍: 北京误识别为 '姓性年户'
原文配套:安装使用说明
4.EasyOCR
EasyOCR是一个用于从图像中提取文本的python模块。它是一种通用的OCR,可以读取自然场景文本和文档中的密集文本。我们目前正在支持80多种语言并不断扩展。
-
优点
-
支持pip安装,但需要自己手动下载模型
-
ocr识别效果尚可,优于一般开源模型
-
-
缺点
-
速度很慢,900 * 1200像素图片平均需要30s左右
-
不支持补充训练
-
5.Tesseract OCR
Tesserat OCR 是一款可在各种操作系统运行的 ,由Google开发的OCR引擎。它可以免费使用,并支持多种语言。虽然它没有一个官方的云工具,但是它可以集成到各种编程语言和应用程序中,因此可以很容易地创建自己的OCR云工具。
-
优点
- 支持补充训练
-
缺点
-
安装使用困难,不支持pip安装,官网下载配置教程(Tesseract-OCR 下载安装和使用)
-
中文识别效果差
-
官方文档
6.Google Vision API
Google Cloud Vision API是谷歌提供的云端视觉分析服务,可以通过API调用来实现图像分析、OCR文字识别等功能。相比于Tesseract OCR,它具有更强大的图像分析能力和更便捷的使用方式。
总结
paddle ocr和cnocr,两者都能实现商业化精准度。其中cnocr执行速度快,速度略快于paddle ocr识别效果比肩paddle ocr,但paddle ocr模型补充训练方便
某些场景下,如小图片且对速度要求较高可以尝试使用chinese_lite ocr.
此外由部分stackoverflow用户反馈可知paddle和Tesseract的区别如下:
-
数据来源区别:Tesseract对印刷体扫描文档效果更好,paddle更适用于手写体等场景,但二者都支持训练
-
速度区别:CPU情况下T优于P,但paddle在GPU支持下比Tesseract速度快出一大截
-
预处理区别:如果不提供预处理(例如二值化),对RGB图像而言,paddle的效果优于Tesseract。在二值化情况下Tesseract的长文本效果通常优于paddle
-
正确率&精度差别:T的表现略高于P,主要原因是paddle主要有单词和标点之间缺少空格的问题,但易于纠正,在后处理算法之后精度与Tesseract相当。且非90度旋转中表现良好。
-
模型大小:P的轻量级模型大小为2MB左右,T则为23MB左右
-
数据安全:……
某个国外帖子显示的数据:
技术难点
1.不同拍摄角度:指通过正拍、斜拍和图像反转等不同角度进行拍摄;
2.不同光线:指在亮光(可能会出现反光)、暗光和部分亮光部分暗光的情形下拍摄;
3.文字不清晰:指存在因污损、遮挡、折痕、印章、背景纹理等造成文字不清楚的样本;
4.边框不完整:主要指图片样本中物体(证件、票据、车牌等)边框没有完整出现在画面中;
5.其他特殊情况:主要指卡证类样本需考虑带有少数民族文字、生僻字,同时考虑到证件等用于高安全场景,对复印、扫描、屏幕翻拍、PS等样本进行告警;印刷体样本需考虑不同字号、不同排版方向,以及弯曲的文本。
评价指标
OCR评价指标包括字段粒度和字符粒度的识别效果评价指标。
- 以字段为单位的统计和分析,适用于卡证类、票据类等结构化程度较高的OCR应用评测。
- 以字符(文字和标点符号)为单位的统计和分析,适用于通用印刷体、手写体类非结构化数据的OCR应用评测。具体指标包括以下几个:
此外,从服务角度来说,识出率(准确率)、平均耗时(处理速度)、数据安全等也是衡量OCR系统好坏的指标之一。
参考文档
csdn:OCR入门教程系列(一):OCR基础导论
OCR识别技术的应用:电子资料自动重命名与归档
csdn:6款开源中文OCR使用介绍(亲测效果)
使用Tesseract OCR、Google Cloud Vision API的区别
Stack Overflow:与Tesseract相比,PaddleOCR的性能如何
Put to Test: PaddleOCR Engine Example and Benchmark
csdn:PaddleOCR训练属于自己的模型详细教程(从打标,制作数据集,训练到应用,以行驶证识别为例)
利用OCR解决增值税发票内容文本识别:涉及paddleOCR,区域分割,视平面变换
Tesseract-OCR 下载安装和使用
Tesseract OCR 下载及安装教程 (中英文语言包)
python+Tesseract OCR实现截屏识别文字
相关文章:

金融OCR领域实习日志(一)
一、OCR基础 任务要求: 工作原理 OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相)检查纸上打印的字符,经过检测暗、亮的模式肯定其形状,而后用…...
CC++编译和链接介绍
介绍 C语言的编译和链接是将源代码转换为可执行文件的两个关键步骤。以下是详细的流程: 编译过程(Compilation) 预处理(Preprocessing): 编译器首先对源代码进行预处理,这个阶段处理#include包…...
Element-UI中的el-upload插件上传文件action和headers参数
官网给的例子action都是绝对地址,我现在需要上传到自己后台的地址,只有一个路由地址/task/upload 根据 config/index.js配置,那么action要写成/api/task/upload,另外也可以传入函数来返回地址:action"uploadUrl()"。 …...

在IntelliJ IDEA中通过Spring Boot集成达梦数据库:从入门到精通
目录 博客前言 一.创建springboot项目 新建项目 选择创建类型编辑 测试 二.集成达梦数据库 添加达梦数据库部分依赖 添加数据库驱动包 配置数据库连接信息 编写测试代码 验证连接是否成功 博客前言 随着数字化时代的到来,数据库在应用程序中的地位越来…...

docker相关
下载Ubuntu18.04文件64位(32位安装不了MySQL) https://old-releases.ubuntu.com/releases/18.04.4/?_ga2.44113060.1243545826.1617173008-2055924693.1608557140 Linux ubuntu16.04打开控制台:到桌面,可以按快捷键ctrlaltt 查…...

生产力工具|卸载并重装Anaconda3
一、Anaconda3卸载 (一)官方方案一(Uninstall-Anaconda3-不能删除配置文件) 官方推荐的方案是两种,一种是直接在Anaconda的安装路径下,双击: (可以在搜索栏或者使用everything里面搜…...

大模型学习与实践笔记(十二)
使用RAG方式,构建opencv专业资料构建专业知识库,并搭建专业问答助手,并将模型部署到openxlab 平台 代码仓库:https://github.com/AllYoung/LLM4opencv 1:创建代码仓库 在 GitHub 中创建存放应用代码的仓库ÿ…...

Vulnhub靶机:FunBox 5
一、介绍 运行环境:Virtualbox 攻击机:kali(10.0.2.15) 靶机:FunBox 5(10.0.2.30) 目标:获取靶机root权限和flag 靶机下载地址:https://www.vulnhub.com/entry/funb…...

性能优化(CPU优化技术)-NEON指令介绍
「发表于知乎专栏《移动端算法优化》」 本文主要介绍了 NEON 指令相关的知识,首先通过讲解 arm 指令集的分类,NEON寄存器的类型,树立基本概念。然后进一步梳理了 NEON 汇编以及 intrinsics 指令的格式。最后结合指令的分类,使用例…...

【极数系列】Flink环境搭建(02)
【极数系列】Flink环境搭建(02) 引言 1.linux 直接在linux上使用jdk11flink1.18.0版本部署 2.docker 使用容器部署比较方便,一键启动停止,方便参数调整 3.windows 搭建Flink 1.18.0版本需要使用Cygwin或wsl工具模拟unix环境…...

仓储管理系统——软件工程报告(需求分析)②
需求分析 一、系统概况 仓库管理系统是一种基于互联网对实际仓库的管理平台,旨在提供一个方便、快捷、安全的存取货物和查询商品信息平台。该系统通过在线用户登录查询,可以线上操作线下具体出/入库操作、查询仓库商品信息、提高仓库运作效率ÿ…...

立创EDA学习:PCB布局
参考内容 【PCB布线教程 | 嘉立创EDA专业版入门教程(11)】 https://www.bilibili.com/video/BV1mW4y1Z7kb/?share_sourcecopy_web&vd_sourcebe33b1553b08cc7b94afdd6c8a50dc5a 单路布线 遵循顺序 先近后远,先易后难 可以拖动让拐角缩小…...
tomcat与Apache---一起学习吧之服务器
Apache和Tomcat都是Web服务器,但它们有一些重要的区别。 Apache服务器是普通服务器,本身只支持HTML即普通网页。不过可以通过插件支持PHP,还可以与Tomcat连通(单向Apache连接Tomcat,就是说通过Apache可以访问Tomcat资…...
Vue3的优势
Vue3和Vue2之间存在以下主要区别: 1. 性能优化:Vue3在内部进行了重写和优化,采用了新的响应式系统(Proxy),相较于Vue2中的Object.defineProperty,更具性能优势。Vue3还对编译和渲染进行了优化&…...

鸿蒙开发案例002
1、目标需求 界面有增大字体按钮,每次点击增大字体按钮,“Hello ArkTS”都会变大 2、源代码 Entry Component struct Page {textValue: string Hello ArkTSState textSize: number 50myClick():void{this.textSize 4}build() {Row() {Column() {//…...

Git学习笔记(第9章):国内代码托管中心Gitee
目录 9.1 简介 9.1.1 Gitee概述 9.1.2 Gitee帐号注册和登录 9.2 VSCode登录Gitee账号 9.3 创建远程库 9.4 本地库推送到远程库(push) 9.5 导入GitHub项目 9.6 删除远程库 9.1 简介 9.1.1 Gitee概述 众所周知,GitHub服务器在国外,使用GitHub作为…...
使用k8s 配置 RollingUpdate 滚动更新实现应用的灰度发布
方案实现方式: RollingUpdate 滚动更新机制 当某个服务需要升级时,传统的做法是,先将要更新的服务下线,业务停止后再更新版本和配置,然后重新启动服务。 如果业务集群规模较大时,这个工作就变成了一个挑战…...

MATLAB知识点:mode :计算众数
讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。 MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 节选自第3章 3.4.1节 mode :计算众数 众数是指一…...

【JavaWeb】MVC架构模式
文章目录 MVC是什么?一、M :Model 模型层二、V:View 视图层三、C:Controller 控制层四、非前后端分离MVC五、前后端分离MVC总结 MVC是什么? MVC(Model View Controller)是软件工程中的一种**软件…...
【Unity学习笔记】创建人物控制器
人物左右移动 1 导入模型,如果没有模型,则在 窗口-资产商店-free sample 找到人物模型 2 在 窗口-包管理中 导入自己的模型 3 在自己的资产文件夹中找到Prefabs Base HighQuality MaleFree1模型,导入到场景中 4 Assets中创建C#项目 写入如下…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...