手撕重采样,考虑C的实现方式
一、参考文章:
重采样、上采样、下采样 - 知乎 (zhihu.com)
先直接给结论,正常重采样过程如下:
1、对于原采样率fs,需要重采样到fs1,一般fs和fs1都是整数哈,则先找fs和fs1的最小公倍数,设为m,设m/fs=M,m/fs1 = L。则信号先要做M倍的插值,即上采样,再做1/L倍的抽取,即下采样;
2、因为插值和抽取,信号的频带都会变,也就是信号会引入噪声,所以需要滤波处理;
3、具体来说,插值,频谱变窄,即信号频带压缩了,如果不做处理,信号会包含带宽以外的噪声,所以需要做低通只滤出变窄的信号频带,去掉噪声。抽取,之后的频谱会变宽,即最终和原信号频谱对不上,所以又需要低通滤波,将信号滤到和原信号一样的频带。
4、具体来说,第一个低通的通带(归一化)是0~1/M,第二个低通的通带是0~1/L。找到满足性能的滤波器,还是比较有考验的。
回到程序,上文中第一段,涉及到滤波器,改用0相位滤波,即调用matlab的filtfilt。滤波时考虑使用原程序中的滤波器幅值归一化。且,加入抽取、滤波,即实现重采样完整流程,最后,还对比matlab自己的resample函数结果。如下:
clc;
close all;
clear all;
%%%%%%%%%%%%%%%%%程序说明
% 1、使用'zero stuffing'和'low pass filter'实现内插/上采样N = 4; % 上采样率
h_t = ones(1, N);
h_t_lp = sinc(-pi:2*pi/20:pi);
% h_t_lp = h_t_lp ./ sum(h_t_lp); % 归一化LPFA = 1.5;
B = 1;
f1 = 50;
f2 = 100;
Fs = 1000;
t = 0:1/Fs:1;
sig = A * cos(2 * pi *f1 * t) + B * sin(2 * pi *f2 * t); % 原始数据% 插值:插入0
sig_zerostuff = zeros(1, length(sig) * N);
sig_zerostuff(1 : N : length(sig_zerostuff)) = sig;
sig_zerostuff_lp = conv(sig_zerostuff, h_t_lp);
% 采样保持:使得插入的数值与原数据的数值一致
sig_sample_hold = conv(sig_zerostuff, h_t);
% 将采样保持的信号经过LPF
h_t_lp = h_t_lp ./ sum(h_t_lp); % 归一化LPF
% sig_sample_hold_lp = conv(sig_sample_hold, h_t_lp);
sig_sample_hold_lp = filtfilt(h_t_lp,1,sig_sample_hold);subplot(5,1,1);
stem(sig,'MarkerFaceColor',[0 0 1]);xlim([1 25]);
title('原始数据');subplot(5,1,2);
stem(sig_zerostuff,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值后的数据');subplot(5,1,3);
stem(sig_zerostuff_lp,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值后的数据通过LPF');subplot(5,1,4);
stem(sig_sample_hold,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值保持后的数据');subplot(5,1,5);
stem(sig_sample_hold_lp,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('采样保持的数据通过LPF');% 抽取,1/3
sig_sample_hold_lp_downsample = sig_sample_hold_lp(1:3:end);
% sig_sample_hold_lp_downsample_lp = conv(sig_sample_hold_lp_downsample, h_t_lp);
sig_sample_hold_lp_downsample_lp = filtfilt(h_t_lp,1,sig_sample_hold_lp_downsample);
sig_resample = resample(sig, 4, 3);figure
subplot(4,1,1);
stem(sig,'MarkerFaceColor',[0 0 1]);xlim([1 120]);
title('原始数据');
subplot(4,1,2);
stem(sig_sample_hold_lp_downsample,'MarkerFaceColor',[0 1 0]);xlim([1 120]);
title('抽取数据');
subplot(4,1,3);
stem(sig_sample_hold_lp_downsample_lp,'MarkerFaceColor',[1 0 0]);xlim([1 120]);
title('抽取数据通过LPF');
subplot(4,1,4);
stem(sig_resample,'MarkerFaceColor',[0 0 0]);xlim([1 120]);
title('resample重采样数据'); 
结果:


还是文章一,插值可以用另一种方法,即,不是插0值或者保持,而是用其他插值法,matlab有interp函数,可以设置参数用不同插值法。典型的线性插值,应该比较好找C代码。
先看看文章的效果:
效果还是可以的。
关于线性插值C代码,时间关系暂未验证哈:
线性插值_c语言实现_线性插值c语言程序-CSDN博客
标准C语言插值函数 - 百度文库 (baidu.com)
二、一种自创的简单、近似算法
应该有很多这样使用的,只是介绍的少,属于私下处理算法。
简单来说,思路是:
考查原始信号时间点和重采样后信号的时间点,一般来说,重采样信号的一个时间点,是处在原始信号的两个信号点之间(若重合,则直接不用计算),根据此时间点到原信号两个信号点的距离,用原信号这两个信号点插值得到重采样信号此点的信号幅值。
所以很明显,这种方法的优点是,不用考虑抽取、插值、滤波这些麻烦事,只考虑插值即可。
但是,缺点也有,就是不能统一处理,必须每个点都分别处理。
时间关系,后续,可以再测试下。
三、查到一个专利,但是算法还是有问题,未程序实现:
CN202010258902一种数字信号的任意重采样方法及系统
无法添加附件,是个问题。
主要步骤有:


简单说是用sinc函数实现。但是还有较多看不懂的。感觉不理解0052到0058的用意是啥。但是貌似,可以不管其他,直接用最后一个公式算就行了......
后续试试程序仿真...
有关sinc函数(也较辛格函数):20211003:数字滤波器前置知识,sinc函数与Sa函数_sinc函数与sa函数区别-CSDN博客

程序仿真来了,但是结果好像不对,不知道是这理论有问题还是哪里理解不对,欢迎交流了:
clc; clear all; close all;A = 1.5;
B = 1;
f1 = 50;
f2 = 100;
Fs = 1000;
t = 0:1/Fs:1;
sig = A * cos(2 * pi *f1 * t) + B * sin(2 * pi *f2 * t); % 原始数据M = 4; % 上采样率
N = 3; % Fs1/Fs = M/N
INF_L = 50;N1 = length(sig);
N2 = floor(N1*M/N);
sig_out = zeros(1,N2);for m=1:N2if(m==800)m=800;endseq_begin = floor(M*m/N) - INF_L + 1;if(seq_begin<1)seq_begin=1;endseq_end = floor(M*m/N) + INF_L;if(seq_end>N1)seq_end=N1;endfor n=seq_begin:seq_endtmp = abs(M*m - N*n)+1;sig_out(m) = sig_out(m) + sig(n)*sin(pi*tmp/M)./(pi*tmp/M);end
endsig_out2 = resample(sig,4,3);
subplot(3,1,1);
stem(sig,'MarkerFaceColor',[1 0 0]);xlim([1 100]);
title('原数据');subplot(3,1,2);
stem(sig_out,'MarkerFaceColor',[1 1 0]);xlim([1 100]);
title('sinc重采样数据');subplot(3,1,3);
stem(sig_out2,'MarkerFaceColor',[1 0 1]);xlim([1 100]);
title('resample重采样数据');zhh = 1;
结果:

相关文章:
手撕重采样,考虑C的实现方式
一、参考文章: 重采样、上采样、下采样 - 知乎 (zhihu.com) 先直接给结论,正常重采样过程如下: 1、对于原采样率fs,需要重采样到fs1,一般fs和fs1都是整数哈,则先找fs和fs1的最小公倍数,设为m…...
网络安全产品之认识入侵防御系统
由于网络安全威胁的不断演变和增长。随着网络技术的不断发展和普及,网络攻击的种类和数量也在不断增加,给企业和个人带来了巨大的安全风险。传统的防火墙、入侵检测防护体系等安全产品在面对这些威胁时,存在一定的局限性和不足,无…...
第20课 在Android Native开发中加入新的C++类
这节课我们开始利用ffmpeg和opencv在Android环境下来实现一个rtmp播放器,与第2课在PC端实现播放器的思路类似,只不过在处理音视频显示和播放的细节略有不同。 1.压缩备份上节课工程文件夹并修改工程文件夹为demo20,将demo20导入到Eclipse或…...
python学习笔记11(程序跳转语句、空语句)
(一)程序跳转语句 1、break 用法:循环语句中使用,结束本层循环,一般搭配if来使用。注意while/else语法 示例: i0; while i<3:user_nameinput(请输入用户名:)pwdinput("请输入密码&a…...
C. Doremy‘s City Construction(二分图问题)
思路:把集合划分成两部分,一部分中每个数都比另一部分小,这两部分连成一个完全二分图,这种情况是最优的,还需要特判所有数都相等的情况. 代码: void solve(){int n;cin >> n;vector<int>a(n 1);for(int i 1;i < n;i )cin >> a[…...
PHP“引用”漏洞
今日例题: <?php highlight_file(__FILE__); error_reporting(0); include("flag.php"); class just4fun { var $enter; var $secret; } if (isset($_GET[pass])) { $pass $_GET[pass]; $passstr_replace(*,\*,$pass); } $o unser…...
计算机网络-AAA原理概述
对于任何网络,用户管理都是最基本的安全管理要求之一,在华为设备管理中通过AAA框架进行认证、授权、计费实现安全验证。 一、AAA概述 AAA(Authentication(认证), Authorization(授权), and Accounting(计费))是一种管理框架&#…...
Oracle BIEE 示例(一)数据透视表2
1 背景 版本:BIEE 12C 视图:数据透视表 实现内容(顺序与具体内容不一致): 2 空列显示(方法一) 2.1 问题 列为空时,标题栏不显示信息。 2.2 期望 即使数据为空,也要显示列名。 2.3 官方资料 2.3.1 操作步骤 2.3.1.1 要在分析级别关闭空值隐藏,请执行以下操作…...
算法训练营Day50(动态规划11)
说明 较难,二刷再仔细打代码 123.买卖股票的最佳时机III 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 提醒 这道题一下子就难度上来了,关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次&a…...
DS:顺序表的实现(超详细!!)
创作不易,友友们给个三连呗! 本文为博主在DS学习阶段的第一篇博客,所以会介绍一下数据结构,并在最后学习对顺序表的实现,在友友们学习数据结构之前,一定要对三个部分的知识——指针、结构体、动态内存管理的…...
用flinkcdc debezium来捕获数据库的删除内容
我在用flinkcdc把数据从sqlserver写到doris 正常情况下sqlserver有删除数据,doris是能捕获到并很快同步删除的。 但是我现在情况是doris做为数仓,数据写到ods,ods的数据还会通过flink计算后写入dwd层,所以此时ods的数据是删除了…...
mariadb数据库从入门到精通
mariadb数据库的安装以及安全初始化 mariadb数据库的安装以及安全初始化 mariadb数据库的安装以及安全初始化一、实验前提二、mariadb数据库的安装三、mariadb数据库安全初始化3.1 设定数据库基本的安全初始化3.2关闭对外开放端口 系列文章目录一、查看数据库二、进入库并且查看…...
LabVIEW探测器CAN总线系统
介绍了一个基于FPGA和LabVIEW的CAN总线通信系统,该系统专为与各单机进行系统联调测试而设计。通过设计FPGA的CAN总线功能模块和USB功能模块,以及利用LabVIEW开发的上位机程序,系统成功实现了CAN总线信息的收发、存储、解析及显示功能。测试结…...
侧输出流(Side Output)
侧输出流(Side Output)是处理函数中的一个重要功能,允许我们将自定义的数据发送到侧输出流中进行处理或输出。通过将数据发送到侧输出流,我们可以将不同的数据流进行分离,以便进行不同的处理和操作。 在处理函数中&…...
Vue 动态组件与异步组件:深入理解与全面应用
聚沙成塔每天进步一点点 本文内容 ⭐ 专栏简介1. 动态组件实现原理:用法示例: 2. 异步组件实现原理:用法示例: 3. 异步组件的高级应用a. 异步组件的命名:b. 异步组件的加载状态管理: ⭐ 写在最后 ⭐ 专栏简…...
Zephyr 源码调试
背景 调试环境对于学习源码非常重要,但嵌入式系统的调试环境搭建稍微有点复杂,需要的条件略多。本文章介绍如何在 Zephyr 提供的 qemu 上调试 Zephyr 源码,为后续分析 Zephyr OS 相关原理做铺垫。 环境 我的开发环境为 wsl ubuntu…...
数学建模绘图
注意:本文章旨在记录观看B站UP数模加油站之后的笔记文章,无任何商业用途~~ 必备网站 以下网站我都试过,可以正常访问 配色(取色)网站: Color Palettes Generator and Color Gradient Tool Python&#x…...
代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素
代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素 文章目录 代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素1 LeetCode 239.滑动窗口最大值2 LeetCode 347.前K个高频元素 1 LeetCode 239.滑动窗口最大值 题目链接:https…...
【Godot4自学手册】第五节用GDScript语言让主人公动起来
GDScript 是Godot自带的编程语言,用于编写游戏逻辑,它是一种高级面向对象的指令式编程语言,使用渐进类型,专为 Godot 构建。在这一小节里,我将自学用GDScript语言控制主人公的行走和攻击。 一、给Player节点添加GDScr…...
被问到Tomcat是什么该怎么回答?他还有一个好帮手JDK你知道吗?
目录 Tomcat简介: 使用建议: Tomcat好帮手---JDK Tomcat和JDK的关系 安装JDK 1.打开浏览器输入网址 Oracle | Cloud Applications and Cloud Platform 进入Oracle官网 2、在官网首页菜单栏,点击产品,在硬件和软件中找到Java࿰…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
