当前位置: 首页 > news >正文

手撕重采样,考虑C的实现方式

一、参考文章:

重采样、上采样、下采样 - 知乎 (zhihu.com)

先直接给结论,正常重采样过程如下:

1、对于原采样率fs,需要重采样到fs1,一般fs和fs1都是整数哈,则先找fs和fs1的最小公倍数,设为m,设m/fs=M,m/fs1 = L。则信号先要做M倍的插值,即上采样,再做1/L倍的抽取,即下采样;

2、因为插值和抽取,信号的频带都会变,也就是信号会引入噪声,所以需要滤波处理;

3、具体来说,插值,频谱变窄,即信号频带压缩了,如果不做处理,信号会包含带宽以外的噪声,所以需要做低通只滤出变窄的信号频带,去掉噪声。抽取,之后的频谱会变宽,即最终和原信号频谱对不上,所以又需要低通滤波,将信号滤到和原信号一样的频带。

4、具体来说,第一个低通的通带(归一化)是0~1/M,第二个低通的通带是0~1/L。找到满足性能的滤波器,还是比较有考验的。

回到程序,上文中第一段,涉及到滤波器,改用0相位滤波,即调用matlab的filtfilt。滤波时考虑使用原程序中的滤波器幅值归一化。且,加入抽取、滤波,即实现重采样完整流程,最后,还对比matlab自己的resample函数结果。如下:

clc;
close all;
clear all;
%%%%%%%%%%%%%%%%%程序说明
% 1、使用'zero stuffing'和'low pass filter'实现内插/上采样N = 4; % 上采样率
h_t = ones(1, N);
h_t_lp = sinc(-pi:2*pi/20:pi);
% h_t_lp = h_t_lp ./ sum(h_t_lp); % 归一化LPFA = 1.5;
B = 1;
f1 = 50;
f2 = 100;
Fs = 1000;
t = 0:1/Fs:1;
sig = A * cos(2 * pi *f1 * t) + B * sin(2 * pi *f2 * t); % 原始数据% 插值:插入0
sig_zerostuff = zeros(1, length(sig) * N);
sig_zerostuff(1 : N : length(sig_zerostuff)) = sig;
sig_zerostuff_lp = conv(sig_zerostuff, h_t_lp);
% 采样保持:使得插入的数值与原数据的数值一致
sig_sample_hold = conv(sig_zerostuff, h_t);
% 将采样保持的信号经过LPF
h_t_lp = h_t_lp ./ sum(h_t_lp); % 归一化LPF
% sig_sample_hold_lp = conv(sig_sample_hold, h_t_lp);
sig_sample_hold_lp = filtfilt(h_t_lp,1,sig_sample_hold);subplot(5,1,1);
stem(sig,'MarkerFaceColor',[0 0 1]);xlim([1 25]);
title('原始数据');subplot(5,1,2);
stem(sig_zerostuff,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值后的数据');subplot(5,1,3);
stem(sig_zerostuff_lp,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值后的数据通过LPF');subplot(5,1,4);
stem(sig_sample_hold,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('插值保持后的数据');subplot(5,1,5);
stem(sig_sample_hold_lp,'MarkerFaceColor',[1 0 0]);xlim([1 25*N]);
title('采样保持的数据通过LPF');% 抽取,1/3
sig_sample_hold_lp_downsample = sig_sample_hold_lp(1:3:end);
% sig_sample_hold_lp_downsample_lp = conv(sig_sample_hold_lp_downsample, h_t_lp);
sig_sample_hold_lp_downsample_lp = filtfilt(h_t_lp,1,sig_sample_hold_lp_downsample);
sig_resample = resample(sig, 4, 3);figure
subplot(4,1,1);
stem(sig,'MarkerFaceColor',[0 0 1]);xlim([1 120]);
title('原始数据');
subplot(4,1,2);
stem(sig_sample_hold_lp_downsample,'MarkerFaceColor',[0 1 0]);xlim([1 120]);
title('抽取数据');
subplot(4,1,3);
stem(sig_sample_hold_lp_downsample_lp,'MarkerFaceColor',[1 0 0]);xlim([1 120]);
title('抽取数据通过LPF');
subplot(4,1,4);
stem(sig_resample,'MarkerFaceColor',[0 0 0]);xlim([1 120]);
title('resample重采样数据');

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

结果:

还是文章一,插值可以用另一种方法,即,不是插0值或者保持,而是用其他插值法,matlab有interp函数,可以设置参数用不同插值法。典型的线性插值,应该比较好找C代码。

先看看文章的效果:

效果还是可以的。

关于线性插值C代码,时间关系暂未验证哈:

线性插值_c语言实现_线性插值c语言程序-CSDN博客

标准C语言插值函数 - 百度文库 (baidu.com)

二、一种自创的简单、近似算法

应该有很多这样使用的,只是介绍的少,属于私下处理算法。

简单来说,思路是:

考查原始信号时间点和重采样后信号的时间点,一般来说,重采样信号的一个时间点,是处在原始信号的两个信号点之间(若重合,则直接不用计算),根据此时间点到原信号两个信号点的距离,用原信号这两个信号点插值得到重采样信号此点的信号幅值。

所以很明显,这种方法的优点是,不用考虑抽取、插值、滤波这些麻烦事,只考虑插值即可。

但是,缺点也有,就是不能统一处理,必须每个点都分别处理。

时间关系,后续,可以再测试下。

三、查到一个专利,但是算法还是有问题,未程序实现:

CN202010258902一种数字信号的任意重采样方法及系统

无法添加附件,是个问题。

主要步骤有:

简单说是用sinc函数实现。但是还有较多看不懂的。感觉不理解0052到0058的用意是啥。但是貌似,可以不管其他,直接用最后一个公式算就行了......

后续试试程序仿真...

有关sinc函数(也较辛格函数):20211003:数字滤波器前置知识,sinc函数与Sa函数_sinc函数与sa函数区别-CSDN博客

程序仿真来了,但是结果好像不对,不知道是这理论有问题还是哪里理解不对,欢迎交流了:

clc; clear all; close all;A = 1.5;
B = 1;
f1 = 50;
f2 = 100;
Fs = 1000;
t = 0:1/Fs:1;
sig = A * cos(2 * pi *f1 * t) + B * sin(2 * pi *f2 * t); % 原始数据M = 4; % 上采样率
N = 3;  % Fs1/Fs = M/N
INF_L = 50;N1 = length(sig);
N2 = floor(N1*M/N);
sig_out = zeros(1,N2);for m=1:N2if(m==800)m=800;endseq_begin = floor(M*m/N) - INF_L + 1;if(seq_begin<1)seq_begin=1;endseq_end = floor(M*m/N) + INF_L;if(seq_end>N1)seq_end=N1;endfor n=seq_begin:seq_endtmp = abs(M*m - N*n)+1;sig_out(m) = sig_out(m) + sig(n)*sin(pi*tmp/M)./(pi*tmp/M);end    
endsig_out2 = resample(sig,4,3);
subplot(3,1,1);
stem(sig,'MarkerFaceColor',[1 0 0]);xlim([1 100]);
title('原数据');subplot(3,1,2);
stem(sig_out,'MarkerFaceColor',[1 1 0]);xlim([1 100]);
title('sinc重采样数据');subplot(3,1,3);
stem(sig_out2,'MarkerFaceColor',[1 0 1]);xlim([1 100]);
title('resample重采样数据');zhh = 1;

结果:

相关文章:

手撕重采样,考虑C的实现方式

一、参考文章&#xff1a; 重采样、上采样、下采样 - 知乎 (zhihu.com) 先直接给结论&#xff0c;正常重采样过程如下&#xff1a; 1、对于原采样率fs&#xff0c;需要重采样到fs1&#xff0c;一般fs和fs1都是整数哈&#xff0c;则先找fs和fs1的最小公倍数&#xff0c;设为m…...

网络安全产品之认识入侵防御系统

由于网络安全威胁的不断演变和增长。随着网络技术的不断发展和普及&#xff0c;网络攻击的种类和数量也在不断增加&#xff0c;给企业和个人带来了巨大的安全风险。传统的防火墙、入侵检测防护体系等安全产品在面对这些威胁时&#xff0c;存在一定的局限性和不足&#xff0c;无…...

​第20课 在Android Native开发中加入新的C++类

​这节课我们开始利用ffmpeg和opencv在Android环境下来实现一个rtmp播放器&#xff0c;与第2课在PC端实现播放器的思路类似&#xff0c;只不过在处理音视频显示和播放的细节略有不同。 1.压缩备份上节课工程文件夹并修改工程文件夹为demo20&#xff0c;将demo20导入到Eclipse或…...

python学习笔记11(程序跳转语句、空语句)

&#xff08;一&#xff09;程序跳转语句 1、break 用法&#xff1a;循环语句中使用&#xff0c;结束本层循环&#xff0c;一般搭配if来使用。注意while/else语法 示例&#xff1a; i0; while i<3:user_nameinput(请输入用户名&#xff1a;)pwdinput("请输入密码&a…...

C. Doremy‘s City Construction(二分图问题)

思路&#xff1a;把集合划分成两部分,一部分中每个数都比另一部分小,这两部分连成一个完全二分图,这种情况是最优的,还需要特判所有数都相等的情况. 代码&#xff1a; void solve(){int n;cin >> n;vector<int>a(n 1);for(int i 1;i < n;i )cin >> a[…...

PHP“引用”漏洞

今日例题&#xff1a; <?php highlight_file(__FILE__); error_reporting(0); include("flag.php"); class just4fun { var $enter; var $secret; } if (isset($_GET[pass])) { $pass $_GET[pass]; $passstr_replace(*,\*,$pass); } $o unser…...

计算机网络-AAA原理概述

对于任何网络&#xff0c;用户管理都是最基本的安全管理要求之一&#xff0c;在华为设备管理中通过AAA框架进行认证、授权、计费实现安全验证。 一、AAA概述 AAA&#xff08;Authentication(认证), Authorization(授权), and Accounting(计费)&#xff09;是一种管理框架&#…...

Oracle BIEE 示例(一)数据透视表2

1 背景 版本:BIEE 12C 视图:数据透视表 实现内容(顺序与具体内容不一致): 2 空列显示(方法一) 2.1 问题 列为空时,标题栏不显示信息。 2.2 期望 即使数据为空,也要显示列名。 2.3 官方资料 2.3.1 操作步骤 2.3.1.1 要在分析级别关闭空值隐藏,请执行以下操作…...

算法训练营Day50(动态规划11)

说明 较难&#xff0c;二刷再仔细打代码 123.买卖股票的最佳时机III 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 提醒 这道题一下子就难度上来了&#xff0c;关键在于至多买卖两次&#xff0c;这意味着可以买卖一次&#xff0c;可以买卖两次&a…...

DS:顺序表的实现(超详细!!)

创作不易&#xff0c;友友们给个三连呗&#xff01; 本文为博主在DS学习阶段的第一篇博客&#xff0c;所以会介绍一下数据结构&#xff0c;并在最后学习对顺序表的实现&#xff0c;在友友们学习数据结构之前&#xff0c;一定要对三个部分的知识——指针、结构体、动态内存管理的…...

用flinkcdc debezium来捕获数据库的删除内容

我在用flinkcdc把数据从sqlserver写到doris 正常情况下sqlserver有删除数据&#xff0c;doris是能捕获到并很快同步删除的。 但是我现在情况是doris做为数仓&#xff0c;数据写到ods&#xff0c;ods的数据还会通过flink计算后写入dwd层&#xff0c;所以此时ods的数据是删除了…...

mariadb数据库从入门到精通

mariadb数据库的安装以及安全初始化 mariadb数据库的安装以及安全初始化 mariadb数据库的安装以及安全初始化一、实验前提二、mariadb数据库的安装三、mariadb数据库安全初始化3.1 设定数据库基本的安全初始化3.2关闭对外开放端口 系列文章目录一、查看数据库二、进入库并且查看…...

LabVIEW探测器CAN总线系统

介绍了一个基于FPGA和LabVIEW的CAN总线通信系统&#xff0c;该系统专为与各单机进行系统联调测试而设计。通过设计FPGA的CAN总线功能模块和USB功能模块&#xff0c;以及利用LabVIEW开发的上位机程序&#xff0c;系统成功实现了CAN总线信息的收发、存储、解析及显示功能。测试结…...

侧输出流(Side Output)

侧输出流&#xff08;Side Output&#xff09;是处理函数中的一个重要功能&#xff0c;允许我们将自定义的数据发送到侧输出流中进行处理或输出。通过将数据发送到侧输出流&#xff0c;我们可以将不同的数据流进行分离&#xff0c;以便进行不同的处理和操作。 在处理函数中&…...

Vue 动态组件与异步组件:深入理解与全面应用

聚沙成塔每天进步一点点 本文内容 ⭐ 专栏简介1. 动态组件实现原理&#xff1a;用法示例&#xff1a; 2. 异步组件实现原理&#xff1a;用法示例&#xff1a; 3. 异步组件的高级应用a. 异步组件的命名&#xff1a;b. 异步组件的加载状态管理&#xff1a; ⭐ 写在最后 ⭐ 专栏简…...

Zephyr 源码调试

背景 调试环境对于学习源码非常重要&#xff0c;但嵌入式系统的调试环境搭建稍微有点复杂&#xff0c;需要的条件略多。本文章介绍如何在 Zephyr 提供的 qemu 上调试 Zephyr 源码&#xff0c;为后续分析 Zephyr OS 相关原理做铺垫。 环境 我的开发环境为 wsl ubuntu&#xf…...

数学建模绘图

注意&#xff1a;本文章旨在记录观看B站UP数模加油站之后的笔记文章&#xff0c;无任何商业用途~~ 必备网站 以下网站我都试过&#xff0c;可以正常访问 配色&#xff08;取色&#xff09;网站&#xff1a; Color Palettes Generator and Color Gradient Tool Python&#x…...

代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素

代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素 文章目录 代码随想录算法训练营第十天 | 239.滑动窗口最大值、347.前K个高频元素1 LeetCode 239.滑动窗口最大值2 LeetCode 347.前K个高频元素 1 LeetCode 239.滑动窗口最大值 题目链接&#xff1a;https…...

【Godot4自学手册】第五节用GDScript语言让主人公动起来

GDScript 是Godot自带的编程语言&#xff0c;用于编写游戏逻辑&#xff0c;它是一种高级面向对象的指令式编程语言&#xff0c;使用渐进类型&#xff0c;专为 Godot 构建。在这一小节里&#xff0c;我将自学用GDScript语言控制主人公的行走和攻击。 一、给Player节点添加GDScr…...

被问到Tomcat是什么该怎么回答?他还有一个好帮手JDK你知道吗?

目录 Tomcat简介&#xff1a; 使用建议: Tomcat好帮手---JDK Tomcat和JDK的关系 安装JDK 1.打开浏览器输入网址 Oracle | Cloud Applications and Cloud Platform 进入Oracle官网 2、在官网首页菜单栏&#xff0c;点击产品&#xff0c;在硬件和软件中找到Java&#xff0…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...