当前位置: 首页 > news >正文

【云原生】Docker网络模式和Cgroup资源限制

目录

一、Docker 网络实现原理

二、Docker 的网络模式

#网络模式详解:

第一种:host模式

第二种:bridge模式

第三种:container模式

第四种:none模式

第五种:自定义网络

三、Cgroup资源控制

 第一种:CPU 资源控制

(1)设置CPU使用率上限


一、Docker 网络实现原理

Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP,同时Docker网桥是每个容器的默认网关。因为在同一宿主机内的容器都接入同一个网桥,这样容器之间就能够通过容器的 Container-IP 直接通信。

Docker网桥是宿主机虚拟出来的,并不是真实存在的网络设备,外部网络是无法寻址到的,这也意味着外部网络无法直接通过 Container-IP 访问到容器。如果容器希望外部访问能够访问到,可以通过映射容器端口到宿主主机(端口映射),即 docker run 创建容器时候通过 -p 或 -P 参数来启用,访问容器的时候就通过[宿主机IP]:[容器端口]访问容器。

#查看容器的输出和日志信息

docker logs 容器的ID/名称 

查看的是容器中pid=1的主进程的日志

二、Docker 的网络模式

有四种基础网络模式+自定义网络

  • Host:容器将不会虚拟出自己的网卡,配置自己的IP等,而是使用宿主机的IP和端口。
  • Container:创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围。
  • None:该模式关闭了容器的网络功能。
  • Bridge:默认为该模式,此模式会为每一个容器分配、设置IP等,并将容器连接到一个docker0虚拟网桥,通过docker0网桥以及iptables nat 表配置与宿主机通信。
  • 自定义网络

#使用docker run创建Docker容器时,可以用 --net 或 --network 选项指定容器的网络模式
●host模式:使用 --net=host 指定。
●none模式:使用 --net=none 指定。
●container模式:使用 --net=container:NAME_or_ID 指定。
●bridge模式:使用 --net=bridge 指定,默认设置,可省略。

安装Docker时,它会自动创建三个网络,

bridge(创建容器默认连接到此网络)、 none 、host

docker network ls
docker network list
##查看docker网络列表

#网络模式详解:

第一种:host模式

相当于Vmware中的桥接模式,与宿主机在同一个网络中,但没有独立IP地址。
Docker使用了Linux的Namespaces技术来进行资源隔离,如PID Namespace隔离进程,Mount Namespace隔离文件系统,Network Namespace隔离网络等。
一个Network Namespace提供了一份独立的网络环境,包括网卡、路由、iptable规则等都与其他的Network Namespace隔离。 一个Docker容器一般会分配一个独立的Network Namespace。 但如果启动容器的时候使用host模式,那么这个容器将不会获得一个独立的Network Namespace, 而是和宿主机共用一个Network Namespace。容器将不会虚拟出自己的网卡、配置自己的IP等,而是使用宿主机的IP和端口。

总结:容器与宿主机共享网络命名空间,即容器和宿主机使用同一个IP、端口范围(容器与宿主机或其它使用host模式的容器不能用同一个端口)、路由、iptables规则等网络资源。

[root@localhost data]#docker inspect b1 |grep host"NetworkMode": "host",
[root@localhost data]#docker inspect b1 |grep -i network"NetworkMode": "host",

[root@localhost data]#docker exec -it b1 sh
/ # ifconfig / # ping 192.168.20.6

 

第二种:bridge模式

bridge模式是docker的默认网络模式,不用--net参数,就是bridge模式。

相当于Vmware中的 nat 模式容器使用独立network Namespace,并连接到docker0虚拟网卡。通过docker0网桥以及iptables nat表配置与宿主机通信,此模式会为每一个容器分配Network Namespace、设置IP等,并将一个主机上的 Docker 容器连接到一个虚拟网桥上。    

(1)当Docker进程启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的Docker容器会连接到这个虚拟网桥上。虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过交换机连在了一个二层网络中。

(2)从docker0子网中分配一个IP给容器使用,并设置docker0的IP地址为容器的默认网关。在主机上创建一对虚拟网卡veth pair设备。 veth设备总是成对出现的,它们组成了一个数据的通道,数据从一个设备进入,就会从另一个设备出来。因此,veth设备常用来连接两个网络设备。

(3)Docker将 veth pair 设备的一端放在新创建的容器中,并命名为 eth0(容器的网卡),另一端放在主机中, 以 veth* 这样类似的名字命名, 并将这个网络设备加入到 docker0 网桥中。可以通过 brctl show 命令查看。

(4)使用 docker run -p 时,docker实际是在iptables做了DNAT规则,实现端口转发功能。可以使用iptables -t nat -vnL 查看。

[root@localhost data]#docker run -d --name d2 -p 3344:80 --net=bridge nginx:test01		
#--name 选项可以给容器创建一个自定义名称[root@localhost data]#docker inspect d2|grep -i network[root@localhost data]#docker inspect d2|grep -i ipaddress

[root@localhost data]#ifconfig docker
docker0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500inet 172.17.0.1  netmask 255.255.0.0  broadcast 172.17.255.255inet6 fe80::42:55ff:fe03:9d7a  prefixlen 64  scopeid 0x20<link>ether 02:42:55:03:9d:7a  txqueuelen 0  (Ethernet)RX packets 248  bytes 21320 (20.8 KiB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 340  bytes 25341 (24.7 KiB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0[root@localhost data]#iptables -t nat -vnL

[root@localhost data]#docker exec -it d1 sh
/ # ifconfig 
/ # ping 172.17.0.3

 总结:该模式是默认的docker网络模式,每个容器拥有自己独立的网络命名空间。意味着每一个容器有自己独立的ip和端口范围以及路由器和iptables规则;

容器连接到docker0的虚拟网桥,通过docker0网桥以及iptables nat表配置(端口映射)与宿主机之间进行通信。

同时容器之间也可以通信

第三种:container模式

这个模式指定新创建的容器和已经存在的一个容器共享一个Network Namespace,而不是和宿主机共享。 新创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围等。同样,两个容器除了网络方面,其他的如文件系统、进程列表等还是隔离的。两个容器的进程可以通过lo网卡设备通信。

[root@localhost data]#docker run -id --name test1 --net=container:d2 centos:7 /bin/bash[root@localhost data]#docker ps -a[root@localhost data]#docker run -id --name test2 --net=container:d2 nginx:test01

新创建的容器和已经存在的一个容器共享一个Network Namespace

 验证:

实际上这6个文件也对应了6大命名空间

[root@localhost data]#docker inspect -f {{.State.Pid}} test1
#查看容器进程号[root@localhost data]#ll /proc/17491/ns/ 
#查看容器的进程、网络、文件系统等命名空间编号

第四种:none模式

使用none模式,Docker容器拥有自己的Network Namespace,但是,并不为Docker容器进行任何网络配置。 也就是说,这个Docker容器没有网卡、IP、路由等信息这种网络模式下容器只有lo回环网络,没有其他网卡这种类型的网络没有办法联网,封闭的网络能很好的保证容器的安全性。

[root@localhost data]#docker run -d --name c2 --net=none nginx:test01[root@localhost data]#docker exec -it c2 sh
/ # ifconfig 

第五种:自定义网络

#直接使用bridge模式,是无法支持指定IP运行docker的,例如执行以下命令就会报错
[root@localhost data]#docker run -itd --name a1 --network bridge --ip 172.17.0.10 centos:7 /bin/bash//创建自定义网络
#可以先自定义网络,再使用指定IP运行docker
docker network create --subnet=172.18.0.0/16 --opt "com.docker.network.bridge.name"="docker1"  mynetwork
----------------------------------------------------------------------------------------------------------
#docker1 为执行 ifconfig -a 命令时,显示的网卡名,如果不使用 --opt 参数指定此名称,那你在使用 ifconfig -a 命令查看网络信息时,看到的是类似 br-110eb56a0b22 这样的名字,这显然不怎么好记。
#mynetwork 为执行 docker network list 命令时,显示的bridge网络模式名称。
----------------------------------------------------------------------------------------------------------
[root@localhost data]#docker run -itd --name n2 --net=mynetwork --ip 172.18.0.100 nginx:test01

三、Cgroup资源控制

Docker 通过 Cgroup 来控制容器使用的资源配额,包括 CPU、内存、磁盘三大方面, 基本覆盖了常见的资源配额和使用量控制。
Cgroup 是 ControlGroups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 CPU、内存、磁盘 IO 等等) 的机制,被 LXC、docker 等很多项目用于实现进程资源控制。Cgroup 本身是提供将进程进行分组化管理的功能和接口的基础结构,I/O 或内存的分配控制等具体的资源管理是通过该功能来实现的。

 第一种:CPU 资源控制

(1)设置CPU使用率上限

Linux通过CFS(Completely Fair Scheduler,完全公平调度器)来调度各个进程对CPU的使用。CFS默认的调度周期是100ms。
我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少 CPU 时间。

使用 --cpu-period 即可设置调度周期,使用 --cpu-quota 即可设置在每个周期内容器能使用的CPU时间。两者可以配合使用。
CFS 周期的有效范围是 1ms~1s,对应的 --cpu-period 的数值范围是 1000~1000000。
而容器的 CPU 配额必须不小于 1ms,即 --cpu-quota 的值必须 >= 1000。

先下载好压测工具

 做单个容器cpu使用率限制

...........................................................后续再补充....................................................

相关文章:

【云原生】Docker网络模式和Cgroup资源限制

目录 一、Docker 网络实现原理 二、Docker 的网络模式 #网络模式详解&#xff1a; 第一种&#xff1a;host模式 第二种&#xff1a;bridge模式 第三种&#xff1a;container模式 第四种&#xff1a;none模式 第五种&#xff1a;自定义网络 三、Cgroup资源控制 第一种&a…...

实战:加密传输数据解密

前言 下面将分享一些实际的渗透测试经验&#xff0c;帮助你应对在测试中遇到的数据包内容加密的情况。我们将以实战为主&#xff0c;技巧为辅&#xff0c;进入逆向的大门。 技巧 开局先讲一下技巧&#xff0c;掌握好了技巧&#xff0c;方便逆向的时候可以更加快速的找到关键…...

前端开发提高效率的两大工具

一、浏览器中的开发者工具 怎么启动开发者工具&#xff1f; 在浏览器中按下F12或者鼠标右键点击检查 怎么利用&#xff08;常用的几点&#xff09;&#xff1f; 1、元素 点击标红的图标可以用于在页面选择元素&#xff0c;同时右侧会找到元素在前端代码中的位置 点击下方红…...

探索设计模式的魅力:深入理解面向对象设计的深层原则与思维

如何同时提高一个软件系统的可维护性 和 可复用性是面向对象对象要解决的核心问题。 通过学习和应用设计模式&#xff0c;可以更加深入地理解面向对象的设计理念&#xff0c;从而帮助设计师改善自己的系统设计。但是&#xff0c;设计模式并不能够提供具有普遍性的设计指导原则。…...

【Py/Java/C++三种语言详解】LeetCode每日一题240122【贪心】LeetCode670、最大交换

文章目录 题目链接题目描述解题思路为什么是贪心一个带图的例子 代码pythonjavacpp时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目链接 LeetCode670、最大交换 题目描述 给定一个非负整数数组 nums 和一个整数 k &#xff0c;你需要将这个数组分成 k 个非空的连…...

Linux/Doctor

Enumeration nmap 已知目标开放了22,80,8089端口&#xff0c;扫描详细情况如下 可以看到对外开放了22,80,8089三个端口 TCP/80 SSTI 访问80端口&#xff0c;有一个infodoctors.htb的电子邮件&#xff0c;点击其他的也没有什么反应&#xff0c;猜测有可能需要域名访问 在/et…...

嵌入式linux学习之系统烧录

1.所需文件 1. 开发板为正点原子stm32mp157,文件可按照linux驱动教程编译&#xff0c;也可在正点原子文档->08、系统镜像\02、出厂系统镜像中找到&#xff1a; 2.烧录 1.拨码开关为000(usb启动)&#xff0c;otg接口接入虚拟机&#xff0c;打开stm32cubeProgrammer: 2.页面…...

JVM-初始JVM

什么是JVM JVM 全称是 Java Virtual Machine&#xff0c;中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 Java源代码执行流程如下&#xff1a; JVM的功能 1 - 解释和运行 2 - 内存管理 3 - 即时编译 解释和运行 解释…...

EXCEL VBA网抓技巧-复制网页表格,不用遍历单元格

EXCEL VBA网抓技巧-复制网页表格&#xff0c;不用遍历单元格 对应表格复制 Sub tableTest()Set winhttp CreateObject("winhttp.WinHttpRequest.5.1")Set HTML CreateObject("htmlfile")Set oWindow HTML.ParentWindowUrl "https://www.taiwanlo…...

动态规划——炮兵回城【集训笔记】

题目描述 游戏盘面是一个m行n列的方格矩阵&#xff0c;将每个方格用坐标表示&#xff0c;行坐标从下到上依次递增&#xff0c;列坐标从左至右依次递增&#xff0c;左下角方格的坐标为(1,1)&#xff0c;则右上角方格的坐标为(m,n)。 游戏结束盘上只剩下一枚炮兵没有回到城池中&a…...

低成本扫码点餐:1000元全包

在数字化时代&#xff0c;扫码点餐已经成为餐饮行业的标配。然而&#xff0c;对于许多小规模或初创的餐饮企业来说&#xff0c;开发一套完整的扫码点餐系统是一项成本高昂的任务。今天&#xff0c;我们将向您介绍一个低成本、高效的方法&#xff0c;让您用1000块钱轻松搞定一套…...

五款焊在电脑上的效率软件

在当今快节奏的商业环境中&#xff0c;提高工作效率成为了每个人都渴望实现的目标。尤其是在面对繁忙的工作日程、庞杂的任务清单和团队合作的压力时&#xff0c;我们需要一些可靠的工具来帮助我们更好地管理时间、组织工作和提高生产力。幸运的是&#xff0c;现在有许多高效的…...

小程序样例3:根据日历创建待办事项

基本功能 1、待办事项查看 选择不同的日期显示不同的待办: 2、选择日期后 新增事项&#xff1a; 3. 点击事项&#xff0c;查看详情 4、删除事项&#xff1a;删除事项3之后&#xff0c;剩余事项2 5、点击日期可以选择更多的月&#xff1a; 实现思路&#xff1a; 1、数据结构&a…...

计算机设计大赛 协同过滤电影推荐系统

文章目录 1 简介1 设计概要2 课题背景和目的3 协同过滤算法原理3.1 基于用户的协同过滤推荐算法实现原理3.1.1 步骤13.1.2 步骤23.1.3 步骤33.1.4 步骤4 4 系统实现4.1 开发环境4.2 系统功能描述4.3 系统数据流程4.3.1 用户端数据流程4.3.2 管理员端数据流程 4.4 系统功能设计 …...

docker下安装rabbitmq

1.查询rabbitmq的镜像 docker search rabbitmq 2.安装镜像 如果需要安装其他版本在rabbitmq后面跟上版本号即可 docker pull rabbitmq:3.7.7-management docker pull rabbitmq:版本号 -management 直接安装最新的 docker pull rabbitmq 3.启动容器 docker run -dit --name rab…...

量子网络是什么

量子网络是基于量子力学规律对量子信息进行存储、处理和传输的物理装置&#xff0c;是实现量子通讯和大规模量子计算的基础。清华大学研究团队利用同种离子的双类型量子比特编码&#xff0c;在国际上首次实现无串扰的量子网络节点&#xff0c;对未来实现量子通讯和大规模量子计…...

使用javadoc生成maven项目的文档

概述&#xff1a;Maven 提供了 javadoc 插件来执行这个任务。 废话不多说&#xff0c;让我们开始操作吧&#xff01;&#xff01;&#xff01; 第一步&#xff1a;引入插件 在 pom.xml 中配置 javadoc 插件&#xff1a; 在 Maven 项目的 pom.xml 文件中&#xff0c;你需要添加…...

移动端 h5-table react版本支持虚拟列表

介绍 适用于 react ts 的 h5 移动端项目 table 组件 github 链接 &#xff1a;https://github.com/duKD/react-h5-table 有帮助的话 给个小星星 有两种表格组件 常规的&#xff1a; 支持 左侧固定 滑动 每行点击回调 支持 指定列排序 支持滚动加载更多 效果和之前写的vue…...

解决Windows系统本地端口被占用的问题

一、解决Windows系统本地端口被占用的问题&#xff0c;首先我们要在虚拟机上人为的占用本地端口 二、占用端口方法&#xff1a;以管理员身份运行cmd;输入net stop http;如果提示是否真的需要停止这些服务,则选择“Y”;完成后输入:sc config http startdisabled 弹出上图内容则成…...

(超全七大错误)Invalid bound statement (not found): com.xxx.dao.xxxDao.add

1.确保你把dao和mapper都在applicationContext.xml中都扫描了 xml文件 <bean id"sqlSessionFactory" class"org.mybatis.spring.SqlSessionFactoryBean"><property name"dataSource" ref"dataSource"/><property nam…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...