当前位置: 首页 > news >正文

【学习笔记】CF1349F2 Slime and Sequences (Hard Version)

多项式工业警告!!!

点击看题意

思路来自 这位大佬 。

为什么这么好的题解没人评论。

Part 1

前置知识:拉格朗日反演(多项式复合),分式域(引入负整数次项)。

条件:有两个幂级数 F ( x ) , G ( x ) F(x),G(x) F(x),G(x),有 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x,即 F , G F,G F,G互为复合逆。

F , G F,G F,G应常系数为 0 0 0 [ x 1 ] [x^1] [x1]系数非 0 0 0

首先引入分式域。对于无法求逆的整式 F ( x ) F(x) F(x),找出 G ( x ) = F ( x ) / x k G(x)=F(x)/x^k G(x)=F(x)/xk,则 1 F ( x ) = x − k 1 G ( x ) \frac{1}{F(x)}=x^{-k}\frac{1}{G(x)} F(x)1=xkG(x)1。这也说明了分式域下存在负指数(这通常在对整式求逆时出现)。注意,此时乘法卷积仍然是良定义。

引理:(默认 F ( x ) F(x) F(x)满足上述条件)
[ x − 1 ] F ′ ( x ) F ( x ) k = [ k = − 1 ] [x^{-1}]F'(x)F(x)^k=[k=-1] [x1]F(x)F(x)k=[k=1]

证明:当 k ≠ − 1 k\ne -1 k=1时左式可以看作 ( 1 k + 1 F ( x ) k + 1 ) ′ (\frac{1}{k+1}F(x)^{k+1})' (k+11F(x)k+1),而求导不可能产生 [ x − 1 ] [x^{-1}] [x1]项( ln ⁡ ( x ) \ln (x) ln(x)是例外,但是在 x = 0 x=0 x=0处无定义,所以不合法);当 k = − 1 k=-1 k=1时可以验证答案就是 1 1 1

扩展拉格朗日反演:
[ x n ] H ( G ( x ) ) = 1 n [ x n − 1 ] H ′ ( x ) ( x F ( x ) ) n [x^n]H(G(x))=\frac{1}{n}[x^{n-1}]H'(x)\left(\frac{x}{F(x)}\right)^n [xn]H(G(x))=n1[xn1]H(x)(F(x)x)n

另类扩展拉格朗日反演:

[ x n ] H ( G ( x ) ) = [ x n ] H ( x ) ( x F ( x ) ) n + 1 F ′ ( x ) [x^n]H(G(x))=[x^n]H(x)\left(\frac{x}{F(x)}\right)^{n+1}F'(x) [xn]H(G(x))=[xn]H(x)(F(x)x)n+1F(x)

懒得抄了,自己看command_block的博客吧

通常来讲, H ( x ) H(x) H(x)是自己构造的。求复合逆没有比较好的方法,一般要根据题目特殊性质来。一般来讲根据 H ( x ) H(x) H(x) F ( x ) F(x) F(x)谁的导函数比较简单来选取公式,并且显然我们也可以看出当 n = 0 n=0 n=0时只能选后面那一种公式。

比较经典的应用是有标号有根树计数

Part 2

咕了。自己看大佬写的题解吧。感觉肯定比我写得好。

代码:

//我还真写了,居然能过。

相关文章:

【学习笔记】CF1349F2 Slime and Sequences (Hard Version)

多项式工业警告!!! 点击看题意 思路来自 这位大佬 。 为什么这么好的题解没人评论。 Part 1 前置知识:拉格朗日反演(多项式复合),分式域(引入负整数次项)。 条件&a…...

HarmonyOS 鸿蒙应用开发( 六、实现自定义弹窗CustomDialog)

自定义弹窗(CustomDialog)可用于广告、中奖、警告、软件更新等与用户交互响应操作。开发者可以通过CustomDialogController类显示自定义弹窗。具体用法请参考自定义弹窗。 在应用的使用和开发中,弹窗是一个很常见的场景,自定义弹窗…...

# Java NIO(一)FileChannel

Java NIO 1.BIO与NIO的区别 BIO为阻塞IO,NIO为非阻塞IO。 BIONIOJAVA1.4之前Java 1.4之后面向流:以byte为单位处理数据面向块:以块为单位处理数据同步阻塞同步非阻塞无选择器(Selector) 1.1NIO的核心组成部分 Cha…...

[嵌入式软件][启蒙篇][仿真平台] STM32F103实现串口输出输入、ADC采集

上一篇:[嵌入式软件][启蒙篇][仿真平台] STM32F103实现LED、按键 文章目录 一、串口输出(1) 简介(2) 示例代码(3) 仿真效果 二、串口输入(1) 简介(2) 示例代码(3) 仿真效果 三、ADC采集(1) 简介(2) 采集电压(3) 示例代码(电压)(4) 仿真效果 …...

Deepin基本环境查看(四)【硬盘/分区、文件系统、硬连接/软连接】

Linux操作系统(Deepin、Ubuntu)操作系统中,硬盘分区的管理与Windows操作系统不同; 在Linux系统中维护着一个统一的文件目录体系,而硬盘和分区是以资源的形式由操作系统挂接和调度;此外Linux系统中连接(硬连…...

JS之打地鼠案例

需要素材的同学可以私信我 效果图&#xff1a; 上代码&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8"><title></title><style>* {margin: 0;padding: 0;}.box {position: relative;width: 320px;heigh…...

Kubernetes入门

k8s相关基础知识 文章目录 k8s相关基础知识1、Container2、PodPod 与 Container 的不同Pod 其它命令 3、Deployment扩容升级版本Rolling update(滚动更新)存活探针&#xff08;livenessProb&#xff09;就绪探针(readiness) 4、ServiceClusterIPNodePortLoadBalancer 5、Ingres…...

EtherNet/IP开发:C++搭建基础模块,EtherNet/IP源代码

这里是CIP资料的协议层级图&#xff0c;讲解协议构造。 ODVA&#xff08;www.ODVA.org&#xff09;成立于1995年&#xff0c;是一个全球性协会&#xff0c;其成员包括世界领先的自动化公司。结合其成员的支持&#xff0c;ODVA的使命是在工业自动化中推进开放、可互操作的信息和…...

Django(九)

1. 用户登录-Cookie和Session 什么是cookie和session&#xff1f; 发送HTTP请求或者HTTPS请求(无状态&短连接) http://127.0.0.1:8000/admin/list/ https://127.0.0.1:8000/admin/list/http无状态短连接&#xff1a;一次请求响应之后断开连接&#xff0c;再发请求重新连…...

解决Android Studio Unexpected tokens (use ; to separate expressions on the same line)

[TOC](Unexpected tokens (use ; to separate expressions on the same line)) 问题描述&#xff1a;Unexpected tokens (use ; to separate expressions on the same line) 原因&#xff1a;Android Studio 更新到最新的版本之后&#xff0c;gradle工程目录结构发生改变 问…...

【云原生】Docker网络模式和Cgroup资源限制

目录 一、Docker 网络实现原理 二、Docker 的网络模式 #网络模式详解&#xff1a; 第一种&#xff1a;host模式 第二种&#xff1a;bridge模式 第三种&#xff1a;container模式 第四种&#xff1a;none模式 第五种&#xff1a;自定义网络 三、Cgroup资源控制 第一种&a…...

实战:加密传输数据解密

前言 下面将分享一些实际的渗透测试经验&#xff0c;帮助你应对在测试中遇到的数据包内容加密的情况。我们将以实战为主&#xff0c;技巧为辅&#xff0c;进入逆向的大门。 技巧 开局先讲一下技巧&#xff0c;掌握好了技巧&#xff0c;方便逆向的时候可以更加快速的找到关键…...

前端开发提高效率的两大工具

一、浏览器中的开发者工具 怎么启动开发者工具&#xff1f; 在浏览器中按下F12或者鼠标右键点击检查 怎么利用&#xff08;常用的几点&#xff09;&#xff1f; 1、元素 点击标红的图标可以用于在页面选择元素&#xff0c;同时右侧会找到元素在前端代码中的位置 点击下方红…...

探索设计模式的魅力:深入理解面向对象设计的深层原则与思维

如何同时提高一个软件系统的可维护性 和 可复用性是面向对象对象要解决的核心问题。 通过学习和应用设计模式&#xff0c;可以更加深入地理解面向对象的设计理念&#xff0c;从而帮助设计师改善自己的系统设计。但是&#xff0c;设计模式并不能够提供具有普遍性的设计指导原则。…...

【Py/Java/C++三种语言详解】LeetCode每日一题240122【贪心】LeetCode670、最大交换

文章目录 题目链接题目描述解题思路为什么是贪心一个带图的例子 代码pythonjavacpp时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目链接 LeetCode670、最大交换 题目描述 给定一个非负整数数组 nums 和一个整数 k &#xff0c;你需要将这个数组分成 k 个非空的连…...

Linux/Doctor

Enumeration nmap 已知目标开放了22,80,8089端口&#xff0c;扫描详细情况如下 可以看到对外开放了22,80,8089三个端口 TCP/80 SSTI 访问80端口&#xff0c;有一个infodoctors.htb的电子邮件&#xff0c;点击其他的也没有什么反应&#xff0c;猜测有可能需要域名访问 在/et…...

嵌入式linux学习之系统烧录

1.所需文件 1. 开发板为正点原子stm32mp157,文件可按照linux驱动教程编译&#xff0c;也可在正点原子文档->08、系统镜像\02、出厂系统镜像中找到&#xff1a; 2.烧录 1.拨码开关为000(usb启动)&#xff0c;otg接口接入虚拟机&#xff0c;打开stm32cubeProgrammer: 2.页面…...

JVM-初始JVM

什么是JVM JVM 全称是 Java Virtual Machine&#xff0c;中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 Java源代码执行流程如下&#xff1a; JVM的功能 1 - 解释和运行 2 - 内存管理 3 - 即时编译 解释和运行 解释…...

EXCEL VBA网抓技巧-复制网页表格,不用遍历单元格

EXCEL VBA网抓技巧-复制网页表格&#xff0c;不用遍历单元格 对应表格复制 Sub tableTest()Set winhttp CreateObject("winhttp.WinHttpRequest.5.1")Set HTML CreateObject("htmlfile")Set oWindow HTML.ParentWindowUrl "https://www.taiwanlo…...

动态规划——炮兵回城【集训笔记】

题目描述 游戏盘面是一个m行n列的方格矩阵&#xff0c;将每个方格用坐标表示&#xff0c;行坐标从下到上依次递增&#xff0c;列坐标从左至右依次递增&#xff0c;左下角方格的坐标为(1,1)&#xff0c;则右上角方格的坐标为(m,n)。 游戏结束盘上只剩下一枚炮兵没有回到城池中&a…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...