深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本
序列模型(Sequence Model)
基于文本内容及其前后信息进行预测
基于目标不同时刻状态进行预测
基于数据历史信息进行预测
序列模型:输入或者输出中包含有序列数据的模型
突出数据的前后序列关系
两大特点:
- 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应该是不同的,比如“不吃饭”和“吃饭不”这两个短语意思是不同的
- 输入输出不定长。比如文章生成、聊天机器人
循环神经网络(RNN)
前部序列的信息经处理后,作为输入信息传递到后部序列
任务:
自动寻找语句中的人名:
词汇数值化:建立一个词汇-数值一一对应的字典,然后把输入词汇转化数值矩阵
字典生成的另外一种方式
不同类型的RNN模型
RNN常见结构
多输入对多输出、维度相同RNN结构
应用:特定信息识别
应用:情感识别
举例:I feel happy watching the movie
判断:positive
应用:序列数据生成器
举例:文章生成、音乐生成
应用:语言翻译
普通RNN结构缺陷
- 前部序列信息在传递到后部的同时,信息权重下降,导致重要信息丢失
- 求解过程中梯度消失
需要提高前部特定信息的决策权重
长短期记忆网络(LSTM)
- 忘记门:选择性丢弃a与x中不重要的信息
- 更新门:确定给记忆细胞添加哪些信息
- 输出门:筛选需要输出的信息
- 在网络结构很深(很多层)的情况下,也能保留重要信息
- 解决了普通RNN求解过程中的梯度消失问题
双向循环神经网络(BRNN)
做判断时,把后部序列信息也考虑
深层循环神经网络(DRNN)
解决更复杂的序列任务,可以把单层RNN叠起来或者在输出前和普通mlp结构结合使用
实战准备
实战一:RNN实现股价预测
提取序列数据:
def extract_data(data,slide):x=[]y=[]for i in range(len(data)-slide):x.append([a for a in data[i:i+slide]])y.append(data[i+slide])x=np.array(x)x=x.reshape(x.shape[0],x.shape[1],1)return x,y
建立普通RNN模型:
from keras.models import Sequential
from keras.layers import Dense,SimpleRNN
model = Sequential()
#增加一个RNN层
model.add(SimpleRNN(units=5,input_shape=(X.shape[1],X.shape[2]),activation='relu'))
#增加输出层
model.add(Dense(units=1,activation='linear'))
model.compile(optimizer='adam',loss='mean_squared_error')
实战二:LSTM自动生成文本
文本加载:
rew_data = open('flare').read()
# 移除换行字符'\n'
data = rew_data.replace('\n','').replace('\r','')
字符字典建立:
#字符去重
letters = list(set(data))
#建立数字到字符的索引字典
int_to_char = {a:b for a,b in enumerate(letters)}
#建立字符到数字的索引字典
char_to_int = {b:a for a,b
相关文章:

深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本
序列模型(Sequence Model) 基于文本内容及其前后信息进行预测 基于目标不同时刻状态进行预测 基于数据历史信息进行预测 序列模型:输入或者输出中包含有序列数据的模型 突出数据的前后序列关系 两大特点: 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应…...

案例分享 | 助力数字化转型:嘉为科技项目管理平台上线
嘉为科技项目管理平台(一期)基于易趋(EasyTrack)进行实施,通过近一年的开发及试运行,现已成功交付上线、推广使用,取得了良好的应用效果。 1.关于广州嘉为科技有限公司(以下简称嘉为…...
深入理解 MySQL 中的 HAVING 关键字和聚合函数
深入理解 MySQL 中的 HAVING 关键字和聚合函数 在处理数据库查询时,尤其是涉及到大量数据分析和报表生成的场合,了解如何有效使用 SQL 语句中的 HAVING 关键字和聚合函数变得尤为重要。 什么是 HAVING 关键字? HAVING 关键字在 SQL 语句中…...
GPT4.5人工智能即将来临,ChatGPT的正面影响和负面影响(好处和坏处),利弊分析
ChatGPT来了,对我们影响大不大? 近年来,人工智能技术的飞速进步催生了ChatGPT——一种强大的人工智能语言模型。其杰出的生成能力使其能够与人类进行自然、流畅的交流,从而在教育、医疗和娱乐等多个领域展现出巨大的应用潜力。然…...
条款47:请使用traits classes表现类型信息
1.前言 STL主要由“用以表现容器,迭代器和算法”的template构成,但也覆盖若干工具性templates,其中一个名为advance,用来将某个迭代器移动某个给定距离: tempalte<typename IterT,typename DistT>//将迭代器向…...

蓝桥杯省赛无忧 课件49 DFS-剪枝
01 数字王国之军训排队 02 特殊的三角形 03 特殊的多边形...

Linux中查看端口被哪个进程占用、进程调用的配置文件、目录等
1.查看被占用的端口的进程,netstat/ss -antulp | grep :端口号 2.通过上面的命令就可以列出,这个端口被哪些应用程序所占用,然后找到对应的进程PID https://img-blog.csdnimg.cn/c375eb2bed754426b373907acaa7346e.png 3.根据PID查询进程。…...
大模型面试题总结
文章目录 一、大模型(LLMs)基础面二、大模型(LLMs)进阶面三、大模型(LLMs)微调面四、大模型(LLMs)langchain面1. 基于LLM+向量库的文档对话 基础面2. 基于LLM+向量库的文档对话 优化面3. LangChain的概念面试问题4.LangChain的一些模块提问5.LangChain的业务提问6.Lang…...

Authorization Failed You can close this page and return to the IDE
一.问题描述 注册JetBrains成功,并且通过了学生认证,但在activate pycharm时,却显示Authorization Failed You can close this page and return to the IDE如上图 二.原因: 可能是因为之前使用了破解版pycharm 三.解决方法&am…...

【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
系列文章目录 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part1 案例复现 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用 在一个人体姿态估计的任务中,需要用深度学习模型…...
《设计模式的艺术》笔记 - 策略模式
介绍 策略模式定义一系列算法类,将每一个算法封装起来,并让它们可以相互替换。策略模式让算法独立于使用它的客户而变化,也称为政策模式。策略模式是一种对象行为模式。 实现 myclass.h // // Created by yuwp on 2024/1/12. //#ifndef DES…...

【Elasticsearch篇】详解使用RestClient操作索引库的相关操作
文章目录 🍔什么是Elasticsearch🌺什么是RestClient🎆代码操作⭐初始化RestClient⭐使用RestClient操作索引库⭐使用RestClient删除索引库⭐使用RestClient判断索引库是否存在 🍔什么是Elasticsearch Elasticsearch是一个开源的分…...
ES数据处理方法
由于日志数据存在ES项目里,需要从ES中获取日志进行分析,使用SQL数据进行处理,如下: select traceid-- STRING COMMENT 流程id, ,appnum -- BIGINT COMMENT 迭代号, ,appversion --STRING COMMENT APP版本, ,appc…...

STM32实现软件IIC协议操作OLED显示屏(2)
时间记录:2024/1/27 一、OLED相关介绍 (1)显示分辨率128*64点阵 (2)IIC作为从机的地址0x78 (3)操作步骤:主机先发送IIC起始信号S,然后发送OLED的地址0x78,然…...

【linux】远程桌面连接到Debian
远程桌面连接到Debian系统,可以使用以下几种工具: 1. VNC (Virtual Network Computing) VNC(Virtual Network Computing)是一种流行的远程桌面解决方案,它使用RFB(Remote Framebuffer Protocol࿰…...

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-菜单管理实现
锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…...

JS之隐式转换与布尔判定
大家思考一下 [ ] [ ] ? 答案是空字符串 为什么呢? 当做加法运算的时候,发现左右两端存在非原始类型,也就是引用类型对象,就会对对象做隐式类型转换 如何执行的?或者说怎么查找的? 第一步&…...

ubuntu20根目录扩容
ubuntu根目录/ 或者 /home文件夹有时出现空间满了的情况,可以用gparted工具进行空间的重新分配。 首先,如果你是双系统,需要从windows系统下磁盘压缩分配一部分未使用的空间给ubuntu,注意压缩的空间要邻接ubuntu所在盘的位置。 …...

(四)DQL数据查询语言
基础语法 SELECT {*,列名,函数} FROM 表名 [WHERE 条件]; 说明: -SELECT检索关键字 *匹配所有列 , 匹配指定列 -FROM 所提供的数据源(表,视图,另一个查询机制反馈的结果) -WHERE 条件(控制查询的区…...

网络安全03---Nginx 解析漏洞复现
目录 一、准备环境 二、实验开始 2.1上传压缩包并解压 2.2进入目录,开始制作镜像 2.3可能会受之前环境影响,删除即可 编辑 2.4制作成功结果 2.5我们的环境一个nginx一个php 2.6访问漏洞 2.7漏洞触发结果 2.8上传代码不存在漏洞 2.9补充&#…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用
阻止除自定义标签之外的所有标签 先输入一些标签测试,说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时(如通过点击或键盘导航&…...