当前位置: 首页 > news >正文

深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本

序列模型(Sequence Model)

image.png
image.png
基于文本内容及其前后信息进行预测
image.png
基于目标不同时刻状态进行预测
image.png
image.png
基于数据历史信息进行预测
序列模型:输入或者输出中包含有序列数据的模型
突出数据的前后序列关系
两大特点:

  1. 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应该是不同的,比如“不吃饭”和“吃饭不”这两个短语意思是不同的
  2. 输入输出不定长。比如文章生成、聊天机器人

循环神经网络(RNN)

image.png
前部序列的信息经处理后,作为输入信息传递到后部序列
任务:
自动寻找语句中的人名:
image.png
词汇数值化:建立一个词汇-数值一一对应的字典,然后把输入词汇转化数值矩阵
image.png
image.png
image.png
字典生成的另外一种方式
image.png

不同类型的RNN模型

RNN常见结构
image.png
image.png
多输入对多输出、维度相同RNN结构
应用:特定信息识别
image.png
应用:情感识别
举例:I feel happy watching the movie
判断:positive
image.png
应用:序列数据生成器
举例:文章生成、音乐生成
image.png
应用:语言翻译

普通RNN结构缺陷

  • 前部序列信息在传递到后部的同时,信息权重下降,导致重要信息丢失
  • 求解过程中梯度消失

需要提高前部特定信息的决策权重
image.png
长短期记忆网络(LSTM)
image.png
image.png
image.png

  • 忘记门:选择性丢弃a与x中不重要的信息
  • 更新门:确定给记忆细胞添加哪些信息
  • 输出门:筛选需要输出的信息

image.png

  • 在网络结构很深(很多层)的情况下,也能保留重要信息
  • 解决了普通RNN求解过程中的梯度消失问题

双向循环神经网络(BRNN)
image.png
做判断时,把后部序列信息也考虑
深层循环神经网络(DRNN)
解决更复杂的序列任务,可以把单层RNN叠起来或者在输出前和普通mlp结构结合使用
image.png

实战准备

实战一:RNN实现股价预测

提取序列数据:

def extract_data(data,slide):x=[]y=[]for i in range(len(data)-slide):x.append([a for a in data[i:i+slide]])y.append(data[i+slide])x=np.array(x)x=x.reshape(x.shape[0],x.shape[1],1)return x,y

建立普通RNN模型:

from keras.models import Sequential
from keras.layers import Dense,SimpleRNN
model = Sequential()
#增加一个RNN层
model.add(SimpleRNN(units=5,input_shape=(X.shape[1],X.shape[2]),activation='relu'))
#增加输出层
model.add(Dense(units=1,activation='linear'))
model.compile(optimizer='adam',loss='mean_squared_error')

image.png

实战二:LSTM自动生成文本

文本加载:

rew_data = open('flare').read()
# 移除换行字符'\n'
data = rew_data.replace('\n','').replace('\r','')

字符字典建立:

#字符去重
letters = list(set(data))
#建立数字到字符的索引字典
int_to_char = {a:b for a,b in enumerate(letters)}
#建立字符到数字的索引字典
char_to_int = {b:a for a,b 

相关文章:

深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本

序列模型(Sequence Model) 基于文本内容及其前后信息进行预测 基于目标不同时刻状态进行预测 基于数据历史信息进行预测 序列模型:输入或者输出中包含有序列数据的模型 突出数据的前后序列关系 两大特点: 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应…...

案例分享 | 助力数字化转型:嘉为科技项目管理平台上线

嘉为科技项目管理平台(一期)基于易趋(EasyTrack)进行实施,通过近一年的开发及试运行,现已成功交付上线、推广使用,取得了良好的应用效果。 1.关于广州嘉为科技有限公司(以下简称嘉为…...

深入理解 MySQL 中的 HAVING 关键字和聚合函数

深入理解 MySQL 中的 HAVING 关键字和聚合函数 在处理数据库查询时,尤其是涉及到大量数据分析和报表生成的场合,了解如何有效使用 SQL 语句中的 HAVING 关键字和聚合函数变得尤为重要。 什么是 HAVING 关键字? HAVING 关键字在 SQL 语句中…...

GPT4.5人工智能即将来临,ChatGPT的正面影响和负面影响(好处和坏处),利弊分析

ChatGPT来了,对我们影响大不大? 近年来,人工智能技术的飞速进步催生了ChatGPT——一种强大的人工智能语言模型。其杰出的生成能力使其能够与人类进行自然、流畅的交流,从而在教育、医疗和娱乐等多个领域展现出巨大的应用潜力。然…...

条款47:请使用traits classes表现类型信息

1.前言 STL主要由“用以表现容器&#xff0c;迭代器和算法”的template构成&#xff0c;但也覆盖若干工具性templates&#xff0c;其中一个名为advance&#xff0c;用来将某个迭代器移动某个给定距离&#xff1a; tempalte<typename IterT,typename DistT>//将迭代器向…...

蓝桥杯省赛无忧 课件49 DFS-剪枝

01 数字王国之军训排队 02 特殊的三角形 03 特殊的多边形...

Linux中查看端口被哪个进程占用、进程调用的配置文件、目录等

1.查看被占用的端口的进程&#xff0c;netstat/ss -antulp | grep :端口号 2.通过上面的命令就可以列出&#xff0c;这个端口被哪些应用程序所占用&#xff0c;然后找到对应的进程PID https://img-blog.csdnimg.cn/c375eb2bed754426b373907acaa7346e.png 3.根据PID查询进程。…...

大模型面试题总结

文章目录 一、大模型(LLMs)基础面二、大模型(LLMs)进阶面三、大模型(LLMs)微调面四、大模型(LLMs)langchain面1. 基于LLM+向量库的文档对话 基础面2. 基于LLM+向量库的文档对话 优化面3. LangChain的概念面试问题4.LangChain的一些模块提问5.LangChain的业务提问6.Lang…...

Authorization Failed You can close this page and return to the IDE

一.问题描述 注册JetBrains成功&#xff0c;并且通过了学生认证&#xff0c;但在activate pycharm时&#xff0c;却显示Authorization Failed You can close this page and return to the IDE如上图 二.原因&#xff1a; 可能是因为之前使用了破解版pycharm 三.解决方法&am…...

【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建

系列文章目录 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part1 案例复现 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用 在一个人体姿态估计的任务中&#xff0c;需要用深度学习模型…...

《设计模式的艺术》笔记 - 策略模式

介绍 策略模式定义一系列算法类&#xff0c;将每一个算法封装起来&#xff0c;并让它们可以相互替换。策略模式让算法独立于使用它的客户而变化&#xff0c;也称为政策模式。策略模式是一种对象行为模式。 实现 myclass.h // // Created by yuwp on 2024/1/12. //#ifndef DES…...

【Elasticsearch篇】详解使用RestClient操作索引库的相关操作

文章目录 &#x1f354;什么是Elasticsearch&#x1f33a;什么是RestClient&#x1f386;代码操作⭐初始化RestClient⭐使用RestClient操作索引库⭐使用RestClient删除索引库⭐使用RestClient判断索引库是否存在 &#x1f354;什么是Elasticsearch Elasticsearch是一个开源的分…...

ES数据处理方法

由于日志数据存在ES项目里&#xff0c;需要从ES中获取日志进行分析&#xff0c;使用SQL数据进行处理&#xff0c;如下&#xff1a; select traceid-- STRING COMMENT 流程id, ,appnum -- BIGINT COMMENT 迭代号, ,appversion --STRING COMMENT APP版本, ,appc…...

STM32实现软件IIC协议操作OLED显示屏(2)

时间记录&#xff1a;2024/1/27 一、OLED相关介绍 &#xff08;1&#xff09;显示分辨率128*64点阵 &#xff08;2&#xff09;IIC作为从机的地址0x78 &#xff08;3&#xff09;操作步骤&#xff1a;主机先发送IIC起始信号S&#xff0c;然后发送OLED的地址0x78&#xff0c;然…...

【linux】远程桌面连接到Debian

远程桌面连接到Debian系统&#xff0c;可以使用以下几种工具&#xff1a; 1. VNC (Virtual Network Computing) VNC&#xff08;Virtual Network Computing&#xff09;是一种流行的远程桌面解决方案&#xff0c;它使用RFB&#xff08;Remote Framebuffer Protocol&#xff0…...

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-菜单管理实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…...

JS之隐式转换与布尔判定

大家思考一下 [ ] [ ] &#xff1f; 答案是空字符串 为什么呢&#xff1f; 当做加法运算的时候&#xff0c;发现左右两端存在非原始类型&#xff0c;也就是引用类型对象&#xff0c;就会对对象做隐式类型转换 如何执行的&#xff1f;或者说怎么查找的&#xff1f; 第一步&…...

ubuntu20根目录扩容

ubuntu根目录/ 或者 /home文件夹有时出现空间满了的情况&#xff0c;可以用gparted工具进行空间的重新分配。 首先&#xff0c;如果你是双系统&#xff0c;需要从windows系统下磁盘压缩分配一部分未使用的空间给ubuntu&#xff0c;注意压缩的空间要邻接ubuntu所在盘的位置。 …...

(四)DQL数据查询语言

基础语法 SELECT {*,列名,函数} FROM 表名 [WHERE 条件]; 说明&#xff1a; -SELECT检索关键字 *匹配所有列 , 匹配指定列 -FROM 所提供的数据源&#xff08;表&#xff0c;视图&#xff0c;另一个查询机制反馈的结果&#xff09; -WHERE 条件&#xff08;控制查询的区…...

网络安全03---Nginx 解析漏洞复现

目录 一、准备环境 二、实验开始 2.1上传压缩包并解压 2.2进入目录&#xff0c;开始制作镜像 2.3可能会受之前环境影响&#xff0c;删除即可 ​编辑 2.4制作成功结果 2.5我们的环境一个nginx一个php 2.6访问漏洞 2.7漏洞触发结果 2.8上传代码不存在漏洞 2.9补充&#…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...