当前位置: 首页 > news >正文

Python第三方扩展库NumPy

Python第三方扩展库NumPy

NumPy(Numerical Python,注意使用时全部小写 numpy) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

在Windows平台上安装numpy,可在cmd命令行中,输入如下命令

pip3 install numpy 

回车,默认情况使用国外线路较慢,我们可以使用国内的镜像网站:

豆瓣:https://pypi.doubanio.com/simple/

清华:https://pypi.tuna.tsinghua.edu.cn/simple

例如使用清华的镜像

pip3 install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

电脑上安装了多个Python版本,你可以为特定版本的Python安装模块(库、包)。例如我的电脑中安装了多个Python版本,要在Python 3.10版本中安装,并使用清华的镜像cmd命令行中,输入如下命令

py -3.10 -m pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

回车即可。

【关于安装安装第三方库的更多情况,可参见:https://blog.csdn.net/cnds123/article/details/104393385 】

官方文档https://numpy.org/doc/stable/

NumPy 中文文档https://numpy123.com/

NumPy是许多其他科学计算库的基础,如:

  • Pandas:提供高级数据结构和数据分析工具。
  • SciPy:用于科学和技术计算的库,提供了许多数值计算的功能。
  • Matplotlib:用于创建2D图表和图形的库。
  • Scikit-learn:用于机器学习的库。
  • TensorFlow和PyTorch:用于深度学习的库。

【顺便提示:NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。

NumPy:提供对多维数组的支持,以及高效的数组操作和数学函数。它是许多其他数据分析和科学计算包的基础。NumPy 官网 http://www.numpy.org/

SciPy:在 NumPy 的基础上构建,提供了一套用于科学和工程应用的数学算法。它包括模块用于优化、线性代数、积分、插值、特殊函数、快速傅立叶变换、信号和图像处理等。SciPy 官网:https://www.scipy.org/

Matplotlib:是一个绘图库,提供了大量的绘图函数用于创建静态、动态、交互式的图形和数据可视化,可以帮助用户创建各种类型的图形,包括折线图、散点图、柱状图、饼图等。顺便提示一种情况,使用matplotlib安装成功,但使用时提示:…… ImportError: DLL load failed while importing _cext: 拒绝访问。出现这个错误有可能遇到了权限问题。你可以尝试以管理员身份启动你的Python。

Matplotlib 官网:https://matplotlib.org/

Matplotlib中文网 https://www.matplotlib.net  

NumPy、SciPy 和 Matplotlib 都是开源项目,这意味着它们是免费的,而且社区支持强大。

Matplotlib 通常与 NumPy 和 SciPy 一起使用,因为它们通常是科学计算和数据可视化的一部分。有时,单独安装 matplotlib 可能会因为缺少依赖项而导致问题。同时安装这些库可以确保它们之间的兼容性,并且可以避免一些潜在的依赖冲突。下面是一个基本的命令行示例,用于同时安装这三个库:

pip install numpy scipy matplotlib】

NumPy基本用法(注意使用时全部小写numpy):

import numpy as np

# 创建一个一维数组

arr1 = np.array([1, 2, 3, 4, 5])

# 创建一个二维数组

arr2 = np.array([[1, 2, 3], [4, 5, 6]])

# 使用arange函数创建一个数组

arr3 = np.arange(10)

# 对数组进行基本的数学运算

arr4 = arr2 + 2

arr5 = arr2 * 3

# 计算数组的平均值

mean_value = np.mean(arr1)

mean_value2 = np.mean(arr2)

# 创建一个线性序列数组,从0开始,到10结束,步长为2

arr6 = np.arange(0, 10, 2)

运行参见下图:

顺便提示:NumPy 提供了一个名为 ndarray 的强大数组对象,它可以表示任意维度的数组。对于矩阵操作,我们通常使用二维的 ndarray,它可以被视为行和列的集合。 NumPy 也提供了一个名为 matrix 的专门的矩阵类,但它并不推荐使用,已经宣布在未来的版本中可能会弃用 matrix 类因为 matrix 类仅限于二维且可能在未来的版本中被弃用。相反,NumPy 鼓励使用常规的 ndarray 对象,因为它们更通用且功能更强大。

下面是一个使用numpy库和Python自带的标准库来模拟掷骰子游戏的示例。

在这个例子中,我们将模拟掷两个六面骰子10000次,并计算两个骰子之和的分布情况。源码如下:

import numpy as np# 设置随机种子以获得可重复的结果
np.random.seed(0)# 模拟掷骰子
num_rolls = 10000
dice1 = np.random.randint(1, 7, size=num_rolls)  # 生成第一个骰子的结果
dice2 = np.random.randint(1, 7, size=num_rolls)  # 生成第二个骰子的结果
sum_of_dice = dice1 + dice2  # 计算两个骰子之和# 计算和的分布情况
sums, counts = np.unique(sum_of_dice, return_counts=True)# 打印结果
for sum_, count in zip(sums, counts):print(f"Sum of {sum_}: {count} times")

运行效果:

这个示例展示了numpy的几个关键功能:

np.random.randint: 生成一定范围内的随机整数。

np.random.seed: 设置随机种子以确保每次运行代码时获得相同的随机数序列。

np.unique: 找出数组中所有不同的值,并返回这些不同值及其在原数组中出现的次数。

这个简单的模拟可以帮助我们理解随机事件的概率分布。

相关文章:

Python第三方扩展库NumPy

Python第三方扩展库NumPy NumPy(Numerical Python,注意使用时全部小写 numpy) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 在Windows平台上安装numpy,可在cmd命令…...

Dockerfile简介和基础实践

文章目录 1、Dockerfile简介1.1、Dockerfile解决的问题1.2、docker build 构建流程1.3、关键字介绍 2、Dockerfile 实践2.1、基本语法实践 --- golang2.1.1 问题检查 2.2、基本语法实践 --- gcc 总结 1、Dockerfile简介 Dockerfile是一个创建镜像所有命令的文本文件, 包含了一…...

3分钟 docker搭建 帕鲁服务器

1. 安装docker 1.安装依赖环境 yum -y install yum-utils device-mapper-persistent-data lvm22.设置镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo3.安装docker 3.1 yum makecache fast yum install docker-ce …...

[BUUCTF 2018]Online Tool(特详解)

这段代码块检查请求中是否设置了HTTP_X_FORWARDED_FOR头部。如果设置了,它将REMOTE_ADDR设置为HTTP_X_FORWARDED_FOR的值。这通常用于处理Web服务器位于代理后面的情况。 如果URL中未设置host参数,它使用highlight_file(__FILE__);来显示PHP文件的源代码…...

Qt Design Studio+Pyside项目

Qt Design Studio设计出的项目结构有多个层级的目录,我们直接用类似Qt Creator工具的方式加载main.qml文件时会报错提示module "content" is not installed,将content加入importPath后还是报同样的错误。 Qt Design Studio生成的文件包含了.qm…...

软件门槛之算法

软件门槛之算法 1.背景2.算法定义3.特征4.基本要素5.常用设计模式6.常用实现方法7.复杂度时间复杂度空间复杂度8.分类9.算法常用的一些工具10.算法的检验标准1.背景 一入行业深似海 再回首已是白发生! 工作这么多年了,感觉算法是比较难搞的。 写代码最重要的可能是框架和算法…...

第八篇【传奇开心果系列】beeware的toga开发移动应用示例:实现消消乐安卓手机小游戏

传奇开心果博文系列 系列博文目录beeware的toga开发移动应用示例系列博文目录一、项目目标二、安装依赖三、初步实现四、扩展思路五、实现游戏逻辑示例代码六、实现界面设计示例代码七、实现增加关卡和难度示例代码八、实现存档和排行榜示例代码九、实现添加特殊方块和道具示例…...

【MySQL】MySQL内置函数--日期函数/字符串函数/数学函数/其他相关函数

文章目录 1.日期函数2.字符串函数3.数学函数4.其它函数 1.日期函数 MySQL中内置了一下函数: 函数名称描述current_date()当前日期current_time()当前时间current_timestamp()当前时间戳date(datetime)返回datetime参数的日期部分date_add(date,interval d_value_t…...

应急响应红蓝工程师白帽子取证Linux和windows入侵排查还原攻击痕迹,追溯攻击者,以及各种木马和病毒以及恶意脚本文件排查和清除

应急响应红蓝工程师白帽子取证Linux入侵排查还原攻击痕迹,追溯攻击者,以及各种木马和病毒以及恶意脚本文件排查和清除。 一般服务器被入侵的迹象,包括但不局限于:由内向外发送大量数据包(DDOS肉鸡)、服务器资源被耗尽(挖矿程序)、不正常的端口连接(反向shell等)、服务…...

vue项目使用element-plus

介绍 1.element Plus 是一套基于 Vue.js 的组件库,是对饿了么团队的 Element UI 组件库的升级版本。Element Plus 的目标是提供一套更为现代、更好用的 Vue.js UI 组件。 导入 1.1 执行命令: npm install element-plus --save 1.2 在main.js中做如下配置import E…...

Fastbee物联网项目新手快速入门

一,前提条件 后端环境准备如下: 正式环境推荐硬件资源最低要求4c8G,硬盘40G。JDK 1.8.0_2xx (需要小版本号大于200) 。Maven3.6.3。(IDEA启动时使用IDEA默认自带的版本即可)。 启动fastbee之前,请先确定…...

Linux 网络流量相关工具

本文聚焦于网络流量的查看、端口占用查看。至于网络设备的管理和配置,因为太过复杂且不同发行版有较大差异,这里就不赘述,后面看情况再写。 需要注意的是,这里列出的每一个工具都有丰富的功能,流量/端口信息查看只是其…...

KMP算法关于next数组详解

j1234567abcabcdnext[j]0111234 要求j7的时候,next数组为多少,j7的时候,就是看i6的时候前缀和后缀的关系(因为求7的时候,和7没有关系,和7的前面有关系) 当i6的时候,j3,…...

【Docker】数据持久化 挂载

Docker的镜像是只读的,但是容器是可写的,我们可以将数据写入到容器,不过一旦容器删除数据将会丢 失,那么有什么办法能将数据进行持久化存储呢? ——在宿主机上开辟一块地方,存储内容和docker容器的存储内…...

redis-主从复制

1.主从复制 1.1简介 主机数据更新后根据配置和策略, 自动同步到备机的master/slaver机制,Master以写为主,Slave以读为主 1.2作用 1、数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。 2、故…...

知识产权如何转为实缴资本,实操

网上已传疯了,相关部门要求企业注册资本认缴的必须在5年内完成实缴,这一下子引起企业老板们着急了。以前公司注册时,很多老板因为是认缴资本,完全凭脑袋一拍,写上注册资金5000万,有的甚至写上几个小目标。现…...

docker-compose安装

一、docker-compose是什么 Docker Compose是一个用来定义和运行复杂应用的Docker工具。 一个使用Docker容器的应用,通常由多个容器组成。使用Docker Compose不再需要使用shell脚本来启动容器。 Compose 通过一个配置文件来管理多个Docker容器,在配置文件…...

「 典型安全漏洞系列 」06.路径遍历(Path Traversal)详解

引言:什么是路径遍历?如何进行路径遍历攻击并规避常见防御?如何防止路径遍历漏洞。 1. 简介 路径遍历(Path Traversal)是一种安全漏洞,也被称为目录遍历或目录穿越、文件路径遍历。它发生在应用程序未正确…...

【Android Gradle 插件】Gradle 参考文档收集

Android Plugin DSL Reference 参考文档 Android Plugin DSL Reference 参考文档 : Android Studio 构建配置官方文档 : 配置 build | Android Studio | Android Developers 添加构建依赖项 参考文档 : https://developer.android.google.cn/studio/build/dependencies …...

Controller的部分注解

目录 1.增加 用到注解 1.1RequestBody注解解析: 2.查询方法当中参数不用注解! 3.起售停售用到注解 3.1PathVariable解析 4.删除菜品注解 4.1RequestParam 5.修改用到的注解 5.1修改分两步 用到两个注解 6:总结 1.增加 用到注解…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...