当前位置: 首页 > news >正文

Mysql大数据量分页优化

前言

之前有看过到mysql大数据量分页情况下性能会很差,但是没有探究过它的原因,今天讲一讲mysql大数据量下偏移量很大,性能很差的问题,并附上解决方式。

原因

将原因前我们先做一个试验,我做试验使用的是mysql5.7.24版本(mysql8上我也试验出来同样的问题),看看mysql是不是在偏移量比较大的时候分页会比较慢,性能比较差

版本

mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.24    |
+-----------+
1 row in set (0.00 sec)

表结构

CREATE TABLE `trace_monitor_log` (`id` varchar(30) NOT NULL COMMENT '表主键id',`user_id` varchar(30) DEFAULT NULL COMMENT '用户id',`trace_id` varchar(30) DEFAULT NULL COMMENT '追踪id',`trace_type` varchar(30) DEFAULT NULL COMMENT '追踪类型',`path` mediumtext COMMENT '追踪路径',`source_ip` varchar(255) DEFAULT NULL COMMENT '来源ip',`ext_params` mediumtext COMMENT '请求扩展参数',`costs` int(11) DEFAULT '0' COMMENT '请求耗时(毫秒)',`exception` mediumtext COMMENT '异常信息',`create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',PRIMARY KEY (`id`),KEY `trace_id` (`trace_id`),KEY `trace_type` (`trace_type`),KEY `create_time` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='监控日志表';

试验过程

这个是我从测试环境找的一张日志表,里面的数据量是580万左右,我们先看看只查询普通10条数据的情况。

数据量

mysql> select count(*) from trace_monitor_log;
+----------+
| count(*) |
+----------+
|  5806836 |
+----------+
1 row in set (1.66 sec)
explain select * from trace_monitor_log order by trace_id limit 10;

image-20240128210052009

可以看到没有offset偏移量的时候可以直接走索引,key是trace_id,并且只查询了10条数据。

我们在来看看如果offset是1000的时候。

explain select * from trace_monitor_log order by trace_id limit 10 offset 1000;

image-20240128210345205

可以看到偏移量比较小的时候还是可以走索引,rows是1010,这时候发现虽然我们只要查询10条数据,但是查询的时候还是会扫描1000条无用的索引记录。

我们接下往下把offset加到100万

explain select * from trace_monitor_log order by trace_id limit 10 offset 1000000;

image-20240128210656849

这个时候就会发现一个神奇的现象,竟然没有走索引了,type是ALL,就是全表扫描了,执行时间大概花了40多秒,性能确实很差。这里的原因,本来根据索引查出来100万条记录,然后把不需要的数据给丢弃掉,mysql会计算查询成本,发现这样走索引还没有全表扫描快,所以用了全表扫描,但是全表扫描就为了拿到十条数据显然是性能很差的。mysql并不会自动判断先根据trace_id的索引找到偏移量需要的10条数据,再根据这10条索引找到叶子节点的主键记录去回表查询数据,导致了这么差的性能。

解决方式

1.延迟关联

先使用覆盖索引的方式找到对应order by 之后的limit条索引,因为是覆盖索引,直接用的索引记录,没有回表所以很快。接着在使用join的方式,将索引记录和原表关联起来就可以查出来对应的limit条数据。

explain select * from trace_monitor_log t1 join (select trace_id from trace_monitor_log  order by trace_id limit 1000000,10) t2 on t1.trace_id = t2.trace_id

image-20240128211946406

image-20240128212044859

执行时间平均在500-600毫秒左右,相比全表扫描快了很多。

2.书签记录

这个概念我也是从网上看到的,还没找到具体这个概念的出处在哪里。不过不要困于这个概念,只要理解是先找到对应要查询一条索引记录(书签),再根据这个索引去范围查询对应的limit条数数据就容易理解了。

explain select * from trace_monitor_log t1 where trace_id > (select trace_id from trace_monitor_log  order by trace_id limit 999999,1)   order by trace_id limit 10

image-20240128212614389

image-20240128213228356

执行时间和延迟关联差不多,也都走了索引,所以性能也比较好。

参考资料

1.mysql8官网limit优化

2.要想通过面试,MySQL的Limit子句底层原理你不可不知

3.从官方文档中探索MySQL分页的几种方式及分页优化

相关文章:

Mysql大数据量分页优化

前言 之前有看过到mysql大数据量分页情况下性能会很差,但是没有探究过它的原因,今天讲一讲mysql大数据量下偏移量很大,性能很差的问题,并附上解决方式。 原因 将原因前我们先做一个试验,我做试验使用的是mysql5.7.2…...

QT tcp与udp网络通信以及定时器的使用 (7)

QT tcp与udp网络通信以及定时器的使用 文章目录 QT tcp与udp网络通信以及定时器的使用1、QT网络与通信简单介绍2、QT TCP通信1、 服务器的流程2、 客户端的流程3、服务器的编写4、客户端的编写 3、QT UDP通信1、客户端流程2、客户端编写3、UDP广播4、UDP组播 4、定时器的用法1、…...

web架构师编辑器内容-添加自动保存的功能

对于频繁改动的应用,自动保存的功能是一个非常有用的功能,可以避免用户在没有保存的情况下丢失自己保存过的数据。 对于自动保存,一般有两种实现,参考语雀和石墨: 语雀采用的是定时保存的方式,大约在3分半…...

【Redis】关于它为什么快?使用场景?以及使用方式?为何引入多线程?

目录 1.既然redis那么快,为什么不用它做主数据库,只用它做缓存? 2.Redis 一般在什么场合下使用? 3.redis为什么这么快? 4.Redis为什么要引入了多线程? 1.既然redis那么快,为什么不用它做主数据…...

SpringBoot之JWT登录

JWT JSON Web Token(JSON Web令牌) 是一个开放标准(rfc7519),它定义了一种紧凑的、自包含的方式,用于在各方之间以JSON对象安全地传输信息。此信息可以验证和信任,因为它是数字签名的。jwt可以使用秘密〈使用HNAC算法…...

【备战蓝桥杯】——循环结构

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-bFHV3Dz5xMe6d3NB {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...

【数据分享】1929-2023年全球站点的逐年平均气温数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监…...

探索Pyecharts关系图绘制技巧:炫酷效果与创意呈现【第42篇—python:Pyecharts水球图】

文章目录 Pyecharts绘制多种炫酷关系网图引言准备工作代码实战1. 基本关系网图2. 自定义节点样式和边样式3. 关系网图的层级结构4. 添加标签和工具提示5. 动态关系网图6. 高级关系网图 - Les Miserables 示例7. 自定义关系网图布局8. 添加背景图9. 3D 关系网图10. 热力关系网图…...

蓝桥杯-循环节长度

两个整数做除法,有时会产生循环小数,其循环部分称为: 循环节。比如,11/136>0.8461553846153..... 其循环节为[846153] 共有 6 位。下面的方法,可以求出循环节的长度。请仔细阅读代码,并填写划线部分缺少的代码。 注…...

Jython调用openwire库连接activemq转发topic订阅消息到另一个activemq 服务器上 完整代码

以下是一个示例代码,演示如何在Jython中使用OpenWire库连接ActiveMQ,将一个主题(topic)上的订阅消息转发到另一个ActiveMQ服务器上: from org.apache.activemq import * from org.apache.activemq.transport import *…...

面试经典题---30.串联所有单词的子串

30.串联所有单词的子串 我的解法: 滑动窗口: 解法中用到了两个哈希表map1和map2,分别用于记录words中各个单词的出现频数和当前滑动窗口[left, right)中单词的出现频数;外部for循环i从0到len - 1,内部while循环每次会…...

字符串随机生成工具(开源)-Kimen(奇门)

由于最近笔者在开发数据脱敏相关功能,其中一类脱敏需求为能够按照指定的格式随机生成一个字符串来代替原有信息,数据看起来格式需要与原数据相同,如:电话号码,身份证号以及邮箱等。在网上搜索了下,发现没有…...

UE4 CustomDepthMobile流程小记

原生UE opaque材质中获取CustomDepth/CustomStencil会报错 在其Compile中调用的函数中没有看到报错逻辑 材质节点的逻辑都没有什么问题,所以看一下报错 在HLSLMaterialTranslator::Translate中 修改之后 mobile流程的不透明材质可以直接获取SceneTexture::customd…...

Docker 基础篇

目录 一、Docker 简介 1. Docker 2. Linux 容器 3. 传统虚拟机和容器的对比 4. Docker 的作用 5. Docker 的基本组成(Docker 三要素) 6. Docker 工作原理 7. Docker 架构 8. Docker 下载 二、Docker 安装 1. CentOS Docker 安装 2. CentOS8 …...

Idea上操作Git回退本地版本,怎么样保留已修改的文件,回退本地版本的四种方式代表什么?

Git的基本概念:Git是一个版本控制系统,用于管理代码的变更历史记录。核心概念包括仓库、分支、提交和合并。 1、可以帮助开发者合并开发的代码 2、如果出现冲突代码的合并,会提示后提交合并代码的开发者,让其解决冲突 3、代码文件版本管理 问题描述 当我们使用git提交代码…...

vue3封装el-pagination分页组件

1、效果如图&#xff1a; 2、分页组件代码&#xff1a; <template><div class"paging"><el-config-provider :locale"zhCn"><el-paginationv-model:current-page"page.currentPage"v-model:page-size"page.pageSize…...

负载均衡下Webshell连接思路及难点

君衍. 一、应用场景二、环境搭建三、思路以及难点1、查看内部结构2、查看webshell3、使用蚁剑进行连接4、难点1 shell文件上传问题5、难点2 命令执行时飘逸6、难点3 大工具上传失败7、难点4 脚本失效 四、解决方式1、关闭对方节点服务器2、基于IP地址判断是否执行3、脚本实现流…...

基于链表实现贪吃蛇游戏

本文中&#xff0c;我们将使用链表和一些Win32 API的知识来实现贪吃蛇小游戏 一、功能 &#xff08;1&#xff09;游戏载入界面 &#xff08;2&#xff09;地图的绘制 &#xff08;3&#xff09;蛇身的移动和变长 &#xff08;4&#xff09;食物的生成 &#xff08;5&…...

Python网络爬虫实战——实验6:Python实现js逆向与加解密

【实验内容】 本实验主要介绍在数据采集过程中对js代码进行分析从而对加密字段进行解密。 【实验目的】 1、理解js逆向工程的概念 2、学会逆向工程中的加解密分析 【实验步骤】 步骤1 理解js逆向工程的概念 步骤2 学会逆向工程中的加解密分析 步骤3 采集广东政府采购网 步…...

【python】使用aiohttp库编写一个简单的异步服务器

1. aiohttp介绍 aiohttp 是一个用于编写异步 HTTP 客户端和服务器的 Python 库。它建立在 Python 的 asyncio 库之上&#xff0c;提供了一种方便的方式来处理异步请求和响应。 官网地址&#xff1a;Welcome to AIOHTTP — aiohttp 3.9.1 documentation 以下是 aiohttp 的一些…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

结构化文件管理实战:实现目录自动创建与归类

手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题&#xff0c;进而引发后续程序异常。使用工具进行标准化操作&#xff0c;能有效降低出错概率。 需要快速整理大量文件的技术用户而言&#xff0c;这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB&#xff0c;…...

简单介绍C++中 string与wstring

在C中&#xff0c;string和wstring是两种用于处理不同字符编码的字符串类型&#xff0c;分别基于char和wchar_t字符类型。以下是它们的详细说明和对比&#xff1a; 1. 基础定义 string 类型&#xff1a;std::string 字符类型&#xff1a;char&#xff08;通常为8位&#xff09…...

【Qt】控件 QWidget

控件 QWidget 一. 控件概述二. QWidget 的核心属性可用状态&#xff1a;enabled几何&#xff1a;geometrywindows frame 窗口框架的影响 窗口标题&#xff1a;windowTitle窗口图标&#xff1a;windowIconqrc 机制 窗口不透明度&#xff1a;windowOpacity光标&#xff1a;cursor…...