当前位置: 首页 > news >正文

《动手学深度学习(PyTorch版)》笔记5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,对于书上部分章节也做了整合。

Chapter5 Deep Learning Computation

5.1 Layers and Blocks

import torch
from torch import nn
from torch.nn import functional as Fnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))X = torch.rand(2, 20)#2行20列的张量,值为[0,1)内的随机数
#print(net(X))#自定义块
class MLP(nn.Module):# 用模型参数声明层,这里声明两个全连接层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256)  # 隐藏层self.out = nn.Linear(256, 10)  # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 这里使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))net = MLP()
print(net(X))#自定义顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()for idx, module in enumerate(args):#module是Module子类的一个实例,保存在'Module'类的成员变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = moduledef forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return Xnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net(X))#自定义权重为常数的隐藏层
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 下面代码演示如何把代码集成到网络计算流程中while X.abs().sum() > 1:X /= 2return X.sum()net = FixedHiddenMLP()
print(net(X))#嵌套块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(chimera(X))

5.2 Parameter Management

import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
#print(net(X))#查看第二个全连接层的参数
print(net[2].state_dict())
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
print(net.state_dict()['2.bias'].data)#此行作用和上行相同#访问第一个全连接层的参数和访问所有层
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
#由于没有在nn.Sequential中明确指定ReLU层的权重和偏置,因此它们在输出中没有被显示#从嵌套块收集参数
def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
print(rgnet(X))
print(rgnet)
print(rgnet[0][1][0].bias.data)#用内置函数进行参数初始化
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
print(net[0].weight.data[0], net[0].bias.data[0])def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)#初始化参数为常数1nn.init.zeros_(m.bias)
net.apply(init_constant)
print(net[0].weight.data[0], net[0].bias.data[0])def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)##只有一层

在下面的例子中,我们使用以下的分布为任意权重参数 w w w定义初始化方法:
w ∼ { U ( 5 , 10 ) possibility= 1 4 0 possibility= 1 2 U ( − 10 , − 5 ) possibility= 1 4 \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ possibility=} \frac{1}{4} \\ 0 & \text{ possibility=} \frac{1}{2} \\ U(-10, -5) & \text{ possibility=} \frac{1}{4} \end{cases} \end{aligned} w U(5,10)0U(10,5) possibility=41 possibility=21 possibility=41

    def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5net.apply(my_init)print(net[0].weight[:2])net[0].weight.data[:] += 1net[0].weight.data[0, 0] = 42print(net[0].weight.data[0])
    #参数绑定#我们需要给共享层一个名称,以便可以引用它的参数shared = nn.Linear(8, 8)net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))net(X)#检查参数是否相同print(net[2].weight.data[0] == net[4].weight.data[0])net[2].weight.data[0, 0] = 100#确保它们实际上是同一个对象,而不只是有相同的值print(net[2].weight.data[0] == net[4].weight.data[0])

注:在PyTorch中,模型的权重通常在实例化时就进行初始化,但有时候我们希望将权重的初始化推迟到模型第一次被调用的时候(比如有些模型的输入尺寸只有在实际输入数据时才能确定),这时候框架会自动使用延后初始化(deferred initialization)来解决这个问题。

5.3 Custom Layers

import torch
from torch import nn
from torch.nn import functional as Fnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))X = torch.rand(2, 20)#2行20列的张量,值为[0,1)内的随机数
#print(net(X))#自定义块
class MLP(nn.Module):# 用模型参数声明层,这里声明两个全连接层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256)  # 隐藏层self.out = nn.Linear(256, 10)  # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 这里使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))net = MLP()
print(net(X))#自定义顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()for idx, module in enumerate(args):#module是Module子类的一个实例,保存在'Module'类的成员变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = moduledef forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return Xnet = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net(X))#自定义权重为常数的隐藏层
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 下面代码演示如何把代码集成到网络计算流程中while X.abs().sum() > 1:X /= 2return X.sum()net = FixedHiddenMLP()
print(net(X))#嵌套块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(chimera(X))#由于可能两个维度的计算结果都小于等于0,因此结果可能是tensor([[0.],[0.]])

5.4 File I/O

import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file')
x2 = torch.load('x-file')
print(x2)y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
print(x2, y2)mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)torch.save(net.state_dict(), 'mlp.params')#保存模型参数
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
print(clone.eval())
#clone.eval()的目的是切换到评估模式,以确保在加载完模型参数后,模型的行为与推断时一致。
#在训练模式下,某些层的行为可能会导致不同的输出,因此通过切换到评估模式来避免这种不一致性。
Y_clone = clone(X)
print(Y_clone)
print(Y_clone == Y)

5.5 GPU Management

import torch
from torch import nnprint(torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1'))
print(torch.cuda.device_count())#查询可用gpu的数量def try_gpu(i=0):  #@save"""如果存在,则返回gpu(i),否则返回cpu()"""if torch.cuda.device_count() >= i + 1:return torch.device(f'cuda:{i}')return torch.device('cpu')def try_all_gpus():  #@save"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""devices = [torch.device(f'cuda:{i}')for i in range(torch.cuda.device_count())]return devices if devices else [torch.device('cpu')]print(try_gpu(), try_gpu(10), try_all_gpus())x = torch.tensor([1, 2, 3])#张量是默认在CPU上创建的
print(x.device)
X = torch.ones(2, 3, device=try_gpu())
print(X)
Y = torch.rand(2, 3, device=try_gpu(1))
print(Y)Z = X.cuda(1)#在gpu(1)创建X的一个副本Z
print(Z)net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())#将模型参数放在GPU上
print(net(X))
print(net[0].weight.data.device)

相关文章:

《动手学深度学习(PyTorch版)》笔记5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,…...

QT中wchar_t类型如何输出

在Qt中&#xff0c;通常使用QString来处理字符串&#xff0c;而不是wchar_t。QString是Qt中用于处理Unicode字符串的类。如果你有wchar_t类型的字符串&#xff0c;你可以将其转换为QString进行输出。 以下是一个简单的例子&#xff1a; #include <QCoreApplication> #i…...

网络安全04-sql注入靶场第一关

目录 一、环境准备 1.1我们进入第一关也如图&#xff1a; ​编辑 二、正式开始第一关讲述 2.1很明显它让我们在标签上输入一个ID&#xff0c;那我们就输入在链接后面加?id1 ​编辑 2.2链接后面加个单引号()查看返回的内容&#xff0c;127.0.0.1/sqli/less-1/?id1,id1 …...

微服务理解篇

一 :架构演变 1 单体架构: 简单理解为一个服务涵盖所有需求功能2 垂直架构: 按照业务功能将单体架构拆分成小模块服务, 如:订单系统,用户系统,商品系统 ##缺点 引入分布式事务,分布式锁等,优点:模块解耦## 垂直拆分:根据业务层级拆分,比如商城的订单系统,用户系统,商品系统…...

项目篇:基于TCP通信模型的外卖软件实现

一、基本成员及功能实现 本项目主要由服务器&#xff0c;消费者&#xff0c;商家&#xff0c;外卖员组成。基本的功能如下。 对所有人&#xff1a; 1、可以注册登录 2、可以修改个人信息 3、可以销户 商家&#xff1a; 1、注册时需要填写售卖商品信息 2、可以修改商品信…...

深入浅出 diffusion(2):pytorch 实现 diffusion 加噪过程

我在上篇博客深入浅出 diffusion&#xff08;1&#xff09;&#xff1a;白话 diffusion 原理&#xff08;无公式&#xff09;中介绍了 diffusion 的一些基本原理&#xff0c;其中谈到了 diffusion 的加噪过程&#xff0c;本文用pytorch 实现下到底是怎么加噪的。 import torch…...

【软件测试】学习笔记-构建并执行 JMeter 脚本的正确姿势

有些团队在组建之初往往并没有配置性能测试人员&#xff0c;后来随着公司业务体量的上升&#xff0c;开始有了性能测试的需求&#xff0c;很多公司为了节约成本会在业务测试团队里选一些技术能力不错的同学进行性能测试&#xff0c;但这些同学也是摸着石头过河。他们会去网上寻…...

iOS 面试 Swift基础题

一、Swift 存储属性和计算属性比较&#xff1a; 存储型属性:用于存储一个常量或者变量 计算型属性: 计算性属性不直接存储值,而是用 get / set 来取值 和 赋值,可以操作其他属性的变化. 计算属性可以用于类、结构体和枚举&#xff0c;存储属性只能用于类和结构体。存储属性可…...

(七)for循环控制

文章目录 用法while的用法for的用法两者之间的联系可以相互等价用for改写while示例for和while的死循环怎么写for循环见怪不怪表达式1省略第一.三个表达式省略&#xff08;for 改 while&#xff09;全省略即死循环&#xff08;上面已介绍&#xff09; 用法 类比学习while语句 …...

ASP .NET Core Api 使用过滤器

过滤器说明 过滤器与中间件很相似&#xff0c;过滤器&#xff08;Filters&#xff09;可在管道&#xff08;pipeline&#xff09;特定阶段&#xff08;particular stage&#xff09;前后执行操作。可以将过滤器视为拦截器&#xff08;interceptors&#xff09;。 过滤器级别范围…...

CodeGPT--(Visual )

GitCode - 开发者的代码家园 gitcode.com/ inscode.csdn.net/liujiaping/java_1706242128563/edit?openFileMain.java&editTypelite marketplace.visualstudio.com/items?itemNameCSDN.csdn-codegpt&spm1018.2226.3001.9836&extra%5Butm_source%5Dvip_chatgpt_c…...

1.Mybatis入门

目录 前言 1入门 1.1 入门程序实现 1.2 数据准备 ​编辑 1.3 配置Mybatis 1.4 编写SQL语句 1.5 单元测试 1.6 解决SQL警告与提示 2. JDBC介绍(了解) 2.1 介绍 2.2 代码 2.3 问题分析 2.4 技术对比 3. 数据库连接池 3.1 介绍 3.2 产品 4. lombok 4.1 介绍 4.…...

android camera系列(Camera1、Camera2、CameraX)的使用以及输出的图像格式

一、Camera 1.1、结合SurfaceView实现预览 1.1.1、布局 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-au…...

live555搭建流式rtsp服务器

源代码已上传gitee 一、需求 live555源代码中的liveMediaServer是将本地文件作为源文件搭建rtsp服务器&#xff0c;我想用live555封装一个第三方库&#xff0c;接收流数据搭建Rtsp服务器&#xff1b;预想接口如下&#xff1a; class LiveRtspServer { public:/***brief构造一…...

Apache孵化器领路人与导师的职责

对于捐赠到 ASF 孵化器的项目来说&#xff0c; ASF 孵化器项目管理委员会&#xff08;IPMC&#xff09;的成员会扮演两个角色&#xff0c;一个 孵化器领路人&#xff08;Champion&#xff09;&#xff0c;另外一个是孵化器导师&#xff08;Mentor&#xff09;。 本文源自 ALC …...

【C++中STL】set/multiset容器

set/multiset容器 Set基本概念set构造和赋值set的大小和交换set的插入和删除set查找和统计 set和multiset的区别pair对组两种创建方式 set容器排序 Set基本概念 所有元素都会在插入时自动被排序。 set/multist容器属于关联式容器&#xff0c;底层结构属于二叉树。 set不允许容…...

使用 create-react-app 创建 react 应用

一、创建项目并启动 第一步&#xff1a;全局安装&#xff1a;npm install -g create-react-app 第二步&#xff1a;切换到想创建项目的目录&#xff0c;使用命令create-react-app hello-react 第三步&#xff1a;进入项目目录&#xff0c;cd hello-react 第四步&#xff1a;启…...

obs-studio 源码学习 obs.h

obs.h 引用头文件介绍 c99defs.h&#xff1a;这个头文件提供了一些 C99 标准的定义和声明&#xff0c;包括一些常用的宏定义和类型定义&#xff0c;用于提高代码的可移植性和兼容性。 bmem.h&#xff1a;这个头文件提供了对内存分配和管理的功能&#xff0c;包括一些内存分配…...

C语言-指针的基本知识(上)

一、关于内存 存储器&#xff1a;存储数据器件 外存 外存又叫外部存储器&#xff0c;长期存放数据&#xff0c;掉电不丢失数据 常见的外存设备&#xff1a;硬盘、flash、rom、u盘、光盘、磁带 内存 内存又叫内部存储器&#xff0c;暂时存放数据&#xff0c;掉电数据…...

4核16G幻兽帕鲁服务器优惠价格表,阿里云和腾讯云报价

幻兽帕鲁服务器价格多少钱&#xff1f;4核16G服务器Palworld官方推荐配置&#xff0c;阿里云4核16G服务器32元1个月、96元3个月&#xff0c;腾讯云幻兽帕鲁服务器服务器4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录&#xff0c;这个目录下存放着许多可执行文件。与其他系统的可执行文件类似&#xff0c;这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中&#xff0c;用…...