蚁群算法优化问题
%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
m = 50; %蚂蚁个数
Alpha = 1; %信息素重要程度参数
Beta = 5; %启发式因子重要程度参数
Rho = 0.1; %信息素蒸发系数
G = 200; %最大迭代次数
Q = 100; %信息素增加强度系数
C = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;...
3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;...
2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;...
3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;...
2370 2975]; %31 个省会城市坐标
%%%%%%%%%%%%%%%第一步:变量初始化%%%%%%%%%%%%%%
n = size(C,1); %n 表示问题的规模(城市个数)
D = zeros(n,n); %D 表示两个城市距离间隔矩阵
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j) = eps;
end
D(j,i) = D(i,j);
end
end
Eta = 1./D; %Eta 为启发因子,这里设为距离的倒数
Tau = ones(n,n); %Tau 为信息素矩阵
Tabu = zeros(m,n); %存储并记录路径的生成
NC = 1; %迭代计数器
R_best = zeros(G,n); %各代最佳路线
L_best = inf.*ones(G,1); %各代最佳路线的长度
figure(1); %优化解
while NC <= G
%%%%%%%%%%第二步:将 m 只蚂蚁放到 n 个城市上%%%%%%%%%%
Randpos = [];
for i = 1:(ceil(m/n))
Randpos = [Randpos,randperm(n)];
end
Tabu(:,1) = (Randpos(1,1:m))';
%%%第三步:m 只蚂蚁按概率函数选择下一座城市,完成各自的周游%%%%
for j = 2:n
for i = 1:m
visited = Tabu(i,1:(j-1)); %已访问的城市
J = zeros(1,(n-j+1)); %待访问的城市
P = J; %待访问城市的选择概率分布
Jc = 1;
for k = 1:n
if length(find(visited==k))==0
J(Jc) = k;
Jc = Jc+1;
end
end
%%%%%%%%%%%计算待选城市的概率分布%%%%%%%%%%%
for k = 1:length(J)
P(k) = (Tau(visited(end),J(k))^Alpha)...
*(Eta(visited(end),J(k))^Beta);
end
P = P/(sum(P));
%%%%%%%%%%%按概率原则选取下一个城市%%%%%%%%%
Pcum = cumsum(P);
Select = find(Pcum >= rand);
to_visit = J(Select(1));
Tabu(i,j) = to_visit;
end
end
if NC >= 2
Tabu(1,:) = R_best(NC-1,:);
end
%%%%%%%%%%%%%第四步:记录本次迭代最佳路线%%%%%%%%%%
L = zeros(m,1);
for i = 1:m
R = Tabu(i,:);
for j = 1:(n-1)
L(i) = L(i)+D(R(j),R(j+1));
end
L(i) = L(i)+D(R(1),R(n));
end
L_best(NC) = min(L);
pos = find(L==L_best(NC));
R_best(NC,:) = Tabu(pos(1),:);
%%%%%%%%%%%%%%%第五步:更新信息素%%%%%%%%%%%%%
Delta_Tau = zeros(n,n);
for i = 1:m
for j = 1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1)) = ...
Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1)) = ...
Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau = (1-Rho).*Tau+Delta_Tau;
%%%%%%%%%%%%%%%第六步:禁忌表清零%%%%%%%%%%%%%
Tabu = zeros(m,n);
%%%%%%%%%%%%%%%%%历代最优路线%%%%%%%%%%%%%%%
for i = 1:n-1
plot([ C(R_best(NC,i),1), C(R_best(NC,i+1),1)],...
[C(R_best(NC,i),2), C(R_best(NC,i+1),2)],'bo-');
hold on;
end
plot([C(R_best(NC,n),1), C(R_best(NC,1),1)],...
[C(R_best(NC,n),2), C(R_best(NC,1),2)],'ro-');
title(['优化最短距离:',num2str(L_best(NC))]);
hold off;
pause(0.005);
NC = NC+1;
end
%%%%%%%%%%%%%%%%%第七步:输出结果%%%%%%%%%%%%%%
Pos = find(L_best==min(L_best));
Shortest_Route = R_best(Pos(1),:); %最佳路线
Shortest_Length = L_best(Pos(1)); %最佳路线长度
figure(2),
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
相关文章:
蚁群算法优化问题
%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%% clear all; %清除所有变量 close all; %清图 clc; %清屏 m 50; %蚂蚁个数 Alpha 1; %信息素重要程度参数 Beta 5; %启发式因子重要程度参数 Rho 0.1; %信息素蒸发系数 G 20…...
为啥一个 main 方法就能启动项目
在 Spring Boot 出现之前,我们要运行一个 Java Web 应用,首先需要有一个 Web 容器(例如 Tomcat 或 Jetty),然后将我们的 Web 应用打包后放到容器的相应目录下,最后再启动容器。 在 IDE 中也需要对 Web 容器…...
洛谷:P1554 梦中的统计 JAVA
思路:定义一个长度为10的数组,数组下标代表数组元素的数字,比如arr[0]代表数字0.用一个for循环,对每个数先取余再取整,知道取整得到的数为0,说明该数字已经被拆解完了。今天又学了一个输入,原来…...
C++初学笔记整理
目录 1. C关键字 2. 命名空间 1)命名空间的引入和概述 2)命名空间的定义 3)std与命名空间的使用 4).相关特性 3. C输入&输出 4. 缺省参数 1 )缺省参数概念 2)使用及分类 a.全缺省 b.部分缺省 5. 函数…...
记录--在Vue3这样子写页面更快更高效
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 在开发管理后台过程中,一定会遇到不少了增删改查页面,而这些页面的逻辑大多都是相同的,如获取列表数据,分页,筛选功能这些基本功能。而…...
【程序设计与算法(三)】测验和作业题部分答案汇总(面向对象篇)
题目来源:程序设计与算法(三)测验和作业题汇总 文章目录001:简单的swap002:难一点的swap003:好怪异的返回值004:神秘的数组初始化005:编程填空:学生信息处理程序006:奇怪的类复制007:返回什么才好呢008:超简单的复数类009:哪来的输…...
LeetCode 349. 两个数组的交集和 692. 前K个高频单词
两个数组的交集 难度 简单 题目链接 这道题的难度不大,我们可以把数组里的数据存到set里面。这样就完成了排序和去重,然后我们再把一个set里面的数据和另外一个set数据进行比较。如果相同就插入到数组里。 代码如下: 但是这个算法的时间复…...
SpringCloud的五大组件功能
SpringCloud的五大组件 EurekaRibbonHystrixZuulConfig 一、Eureka 作用是实现服务治理,即服务注册与发现。 Eureka服务器相当于一个中介,负责管理、记录服务提供者的信息。服务调用者不需要自己寻找服务 ,而是把需求告诉Eureka &#x…...
剑指 Offer II 016. 不含重复字符的最长子字符串
题目链接 剑指 Offer II 016. 不含重复字符的最长子字符串 mid 题目描述 给定一个字符串 s,请你找出其中不含有重复字符的 最长连续子字符串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子字符串是 “abc”,所以其长度…...
HBase读取流程详解
读流程从头到尾可以分为如下4个步骤:Client-Server读取交互逻辑,Server端Scan框架体系,过滤淘汰不符合查询条件的HFile,从HFile中读取待查找Key。其中Client-Server交互逻辑主要介绍HBase客户端在整个scan请求的过程中是如何与服务…...
Redis学习(一):NoSQL概述
为什么要使用Nosql 现在是大数据时代,过大的数据一般的数据库无法进行分析处理了。 单机MySQL的年代 90年代,一个基本的网站访问量一般不会太大,单个数据库完全足够! 那个时候,更多的去使用静态网站,服务器…...
ESP32设备驱动-MCP23017并行IO扩展驱动
MCP23017并行IO扩展驱动 1、MCP23017介绍 MCP23017是一个用于 I2C 总线应用的 16 位通用并行 I/O 端口扩展器。 16 位 I/O 端口在功能上由两个 8 位端口(PORTA 和 PORTB)组成。 MCP23017 可配置为在 8 位或 16 位模式下工作。 其引脚排列如下: MCP23017 在 3.3v 下工作正常…...
RabbitMQ简介
0. 学习目标 能够说出什么是消息中间件能够安装RabbitMQ能够编写RabbitMQ的入门程序能够说出RabbitMQ的5种模式特征能够使用Spring整合RabbitMQ 1. 消息中间件概述 1.1. 什么是消息中间件 MQ全称为Message Queue,消息队列是应用程序和应用程序之间的通信方法。是…...
【项目设计】高并发内存池(五)[释放内存流程及调通]
🎇C学习历程:入门 博客主页:一起去看日落吗持续分享博主的C学习历程博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记&…...
Git标签与版本发布
1. 什么是git标签 标签,就类似我们阅读时的书签,可以很轻易找到自己阅读到了哪里。 对于git来说,在使用git对项目进行版本管理的时候,当我们的项目开发到一定的阶段,需要发布一个版本。这时,我们就可以对…...
Python面向对象编程
文章目录1 作用域1.1 局部作用域2 类成员权限3 是否继承新式类4 多重继承5 虚拟子类6 内省【在运行时确定对象类型的能力】7 函数参数8 生成器1 作用域 1.1 局部作用域 1,当局部变量遮盖全局变量,使用globals()[变量名]来使用全局变量;2&am…...
【什么情况会导致 MySQL 索引失效?】
MySQL索引失效可能有多种原因,下面列举一些常见的情况: 数据库表数据量太小: 如果表的数据量非常小,则MySQL可能不会使用索引,因为它认为全表扫描的代价更小。 索引列上进行了函数操作: 如果在索引列上…...
Java核心知识点整理之小碎片--每天一点点(坚持呀)--自问自答系列版本
1.int和Integer Integer是int的包装类;int是基本数据类型。 Integer变量必须实例化后才能使用;int变量不需要。 Integer实际是对象的引用,当new一个Integer时,实际上是生成一个指针指向此对象;而int则是直接存储数据值…...
js中new Map()的使用方法
1.map的方法及属性Map对象存有键值对,其中的键可以是任何数据类型。Map对象记得键的原始插入顺序。Map对象具有表示映射大小的属性。1.1 基本的Map() 方法MethodDescriptionnew Map()创建新的 Map 对象。set()为 Map 对象中的键设置值。get()获取 Map 对象中键的值。…...
synchronized从入门到踹门
synchronized是什么synchronized是Java关键字,为了维护高并发是出现的原子性问题。技术是把双刃剑,多线程并发给我带来了前所未有的速率,然而在享受快速编程的过程,也给我们带来了原子性问题。如下:public class Main …...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
