互联网加竞赛 基于深度学习的人脸表情识别
文章目录
- 0 前言
- 1 技术介绍
- 1.1 技术概括
- 1.2 目前表情识别实现技术
- 2 实现效果
- 3 深度学习表情识别实现过程
- 3.1 网络架构
- 3.2 数据
- 3.3 实现流程
- 3.4 部分实现代码
- 4 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习的人脸表情识别
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 技术介绍
1.1 技术概括
面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。
尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

1.2 目前表情识别实现技术


2 实现效果
废话不多说,先上实现效果



3 深度学习表情识别实现过程
3.1 网络架构

面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)
其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

3.2 数据
主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

3.3 实现流程

3.4 部分实现代码
import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth = 20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak# cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)# angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)# text1 = 'Angry: {} Fear: {} Happy: {}'.format(angry, fear, happy)# text2 = ' Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()
4 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
互联网加竞赛 基于深度学习的人脸表情识别
文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较…...
python-自动化篇-运维-监控-简单实例-道出如何使⽤Python进⾏网络监控?
如何使⽤Python进⾏⽹络监控? 使⽤Python进⾏⽹络监控可以帮助实时监视⽹络设备、流量和服务的状态,以便及时识别和解决问题。 以下是⼀般步骤,说明如何使⽤Python进⾏⽹络监控: 选择监控⼯具和库:选择适合⽹络监控需…...
SpringBoot 配置类解析
全局流程解析 配置类解析入口 postProcessBeanDefinitionRegistry逻辑 processConfigBeanDefinitions逻辑 执行逻辑解析 执行入口 ConfigurationClassPostProcessor.processConfigBeanDefinitions()方法中的do while循环体中 循环体逻辑 parse方法调用链 doProcessConfigurat…...
全套军事和民用监听系统
Python全套军事和民用监听系统的研发开发具有重要性的原因如下: 监听系统在军事和民用领域中具有广泛的应用。军事方面,监听系统可用于收集敌方情报、监测通信网络、进行电子战等,对于提高作战效能和获取情报优势至关重要。民用方面ÿ…...
MicroPython核心:编译器
MicroPython编译过程包括以下步骤: 词法分析器将MicroPython程序文本流转换为标记。语法解释器将标记转换为抽象语法(语法树)。根据语法书输出字节码或本地代码。 本文以给MicroPython增加一个简单的语言特性为例来说明这一过程:…...
R语言【taxlist】——tax2traits():将分类信息设置为分类单元特征
Package taxlist version 0.2.4 Description 分类法分类可以包含在taxonRelations插槽提供的信息中的 taxlist 对象中。然而,对于统计分析来说,将这些信息插入到插槽taxonTraits中可能更方便。 Usage tax2traits(object, ...)## S3 method for class …...
CTF-WEB的知识体系
CTF概念 CTF是Capture The Flag的缩写,中文一般译作夺旗赛 CTF起源于1996年DEFCON全球黑客大会 DEFCONCTF是全球技术水平和影响力最高的CTF竞赛 竞赛模式 解题模式:解决网络安全技术挑战(即找到flag),提交后获取相应分值。 攻防赛模式:要求找到其他队…...
【Spring框架】@Cacheable注解:缓存最佳实践
在Java开发中,性能优化是一个永恒的话题。对于使用Spring框架的应用程序来说,Cacheable 注解提供了一种简单有效的方式来提升性能,特别是对于那些计算成本高或数据变化不频繁的操作。本文将深入探讨 Cacheable 的使用方法和注意事项ÿ…...
iZotope RX 10.4.2 mac激活版 音频修复和增强工具
iZotope RX 10 for Mac是一款专业的音频修复软件,旨在提供强大、精确的工具,让用户能够清晰、纯净地处理音频。以下是其主要功能和特点: 软件下载:iZotope RX 10.4.2 mac激活版下载 强大的降噪功能:iZotope RX 10采用了…...
vue核心知识点
一、Vue基础知识点总结 开发vue项目的模式有两种: 基于vue.js,在html中引入vue.js,让vue.js管理div#app元素。基于脚手架环境:通过vue脚手架环境可以方便的创建一个通用的vue项目框架的模板,在此基础之上开发vue项目…...
【乳腺肿瘤诊断分类及预测】基于Elman神经网络
课题名称:基于Elman神经网络的乳腺肿瘤诊断分类及预测 版本日期:2023-05-15 运行方式: 直接运行Elman0501.m 文件即可 代码获取方式:私信博主或QQ:491052175 模型描述: 威斯康辛大学医学院经过多年的收集和整理&a…...
【kubernets】由Evicted状态的Pod探讨k8s中pod的驱逐策略
背景 某天突然发现自己的测试环境中有Evicted状态的pod,于是需要排查原因。先来看看大致情况: [rootk8s-m1 ~]# kubectl get pod -A -o wide|grep k8s-m1 kube-system calico-kube-controllers-bcc6f659f-575mr 1/1 Running 3 177d…...
vxe-table3.0的表格树如何做深层查找,返回搜索关键字的树形结构
vxe-table2.0版本是提供深层查找功能的,因为他的数据源本身就是树形结构,所以深层查找查询出来也是树形结构。 但是vxe-table3.0版本为了做虚拟树功能,将整个数据源由树形垂直结构变成了扁平结构,便不提供深层查询功能,…...
幻兽帕鲁越玩越卡,内存溢出问题如何解决?
近期幻兽帕鲁游戏大火,在联机组队快乐游玩的同时,玩家们也发现了一些小问题。由于游戏有随机掉落材料的设定,服务器在加载掉落物的过程中很容易会出现掉帧、卡顿的情况。某些玩家甚至在游戏1~2时后就出现服务器崩溃的情况…...
C++_list
目录 一、模拟实现list 1、list的基本结构 2、迭代器封装 2.1 正向迭代器 2.2 反向迭代器 3、指定位置插入 4、指定位置删除 5、结语 前言: list是STL(标准模板库)中的八大容器之一,而STL属于C标准库的一部分,因此在C中可以直接使用…...
使用docker部署mongodb
1.创建目录 mkdir -p /opt/mongodb/{data,logs,config} 2.创建配置文件 进入目录 cd /opt写入配置 vim mongod.conf 内容如下 systemLog:# MongoDB发送所有日志输出的目标指定为文件destination: file# mongod或mongos应向其发送所有诊断日志记录信息的日志文件的路径path:…...
C#,打印漂亮的贝尔三角形(Bell Triangle)的源程序
以贝尔数为基础,参考杨辉三角形,也可以生成贝尔三角形(Bell triangle),也称为艾特肯阵列(Aitkens Array),皮埃斯三角形(Peirce Triangle)。 贝尔三角形的构造…...
开源电商系统
前言 做电商永不过时,但形式会不断变化。任何赚钱的事情大体都分为两大块:生产和销售。两者是并重的,首先要有好的产品,其次是做好推广运营和销售渠道建设。对于小微企业来说,前期如果能通过销售赚到第一桶金…...
责任链模式在java中的实现
1 总览 2 概念 避免请求发送者与接收者耦合在一起,让多个对象都有可能接收请求,将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理它为止。职责链模式是一种对象行为型模式。 3 实现 公共部分,一个系…...
粤嵌Gec6818---小项目功能实现简单步骤(RFID+图片显示+音乐+视频)
项目设计开发环境: (1)VMware Workstation Pro软件 (2)ubuntu12 .04 (能交叉编译就行) (3)SecureCRT (4)代码编译器(notepad/Vis…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
