【乳腺肿瘤诊断分类及预测】基于Elman神经网络
课题名称:基于Elman神经网络的乳腺肿瘤诊断分类及预测
版本日期:2023-05-15
运行方式: 直接运行Elman0501.m 文件即可
代码获取方式:私信博主或QQ:491052175
模型描述:
威斯康辛大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10 个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度〉,这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性的。
算法流程:
1. 数据采集:
将乳腺肿瘤病灶组织的细胞核显微图像的1 0 个量化特征作为网络的输入,良性乳腺肿瘤和恶性乳腺肿瘤这两种类别作为网络的输出。共有乳腺癌数据集共包括569 个病例,其中, 良性357 例, 恶性212 例。随机选取500 组数据作为训练集,剩余69 组作为测试集。每个病例的一组数据包括采样组织中各细胞核的10 个特征量的平均值、标准差和最坏值(各特征的3 个最大数据的平均值)共30 个数据。数据文件中每组数据共分32 个字段,第l个字段为病例编号;第2 个字段为确诊结果, B 为良性, M 为恶性(数据中1为良性,2为恶性);第3~ 12 个字段是该病例肿瘤病灶组织的各细胞核显微图像的10 个量化特征的平均值;第1 3 ~ 22 个字段是相应的标准差;第2 3 ~32 个字段是相应的最坏值。 (打开data.mat文件可以看仿真数据)
2. 网络创建:
数据采集后,利用Matlab自带的神经网络工具箱中的函数newelm()可以构建一个elman神经网络。其调用格式为net=newelm(PR,[S1,S2...,SN1],{},BTF,BLF,PF,IPF,OPF)。其中PR为R组输入元素的最小值和最大值的设定值,R*2维的矩阵,T为SN*Q2的具有SN个元素的输出矩阵;Si为第i层的长度;TFi为第i层的船体函数,默认值:隐含层为'tansig',输出层为'purelin';BTF为反向传播神经网络训练函数,默认值为'trainlm';BLF为反向传播神经网络权值、阈值学习函数,默认值为'learngdm';PF为性能函数,默认值为'mse',IPF为输入处理函数,默认值为:{fixunknowns','removeconstantrows ',' mapminmax'};OPF为输出处理函数,默认值为'{'removeconstantrows ',' mapminmax'}'
3. 网络训练:
网络创建完毕后,若需要,还可以对神经网络的参数进行设置和修改,随机选择训练集的500个病例的数据作为训练数据输入到网络,便可以对网络进行训练。
4. 网络仿真:
网络通过训练后,将测试数据集的69组的10个量化特征数据输入到网络里,便可以得到对应的输出(即分类)。
5. 结果分析
通过对网络仿真结果的分析,可以得到误诊率(包括良心被误诊为恶性及恶性被误诊为良性),从而可以对该方法的可行性进行评价。
特殊说明:
神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。
Matlab仿真结果:
基于Elman神经网络的乳腺肿瘤诊断分类与预测的仿真结果
训练误差随着迭代次数的变化
基于Elman神经网络的分类预测结果
基于Elman神经网卡的分类预测误差
相关文章:

【乳腺肿瘤诊断分类及预测】基于Elman神经网络
课题名称:基于Elman神经网络的乳腺肿瘤诊断分类及预测 版本日期:2023-05-15 运行方式: 直接运行Elman0501.m 文件即可 代码获取方式:私信博主或QQ:491052175 模型描述: 威斯康辛大学医学院经过多年的收集和整理&a…...
【kubernets】由Evicted状态的Pod探讨k8s中pod的驱逐策略
背景 某天突然发现自己的测试环境中有Evicted状态的pod,于是需要排查原因。先来看看大致情况: [rootk8s-m1 ~]# kubectl get pod -A -o wide|grep k8s-m1 kube-system calico-kube-controllers-bcc6f659f-575mr 1/1 Running 3 177d…...

vxe-table3.0的表格树如何做深层查找,返回搜索关键字的树形结构
vxe-table2.0版本是提供深层查找功能的,因为他的数据源本身就是树形结构,所以深层查找查询出来也是树形结构。 但是vxe-table3.0版本为了做虚拟树功能,将整个数据源由树形垂直结构变成了扁平结构,便不提供深层查询功能,…...

幻兽帕鲁越玩越卡,内存溢出问题如何解决?
近期幻兽帕鲁游戏大火,在联机组队快乐游玩的同时,玩家们也发现了一些小问题。由于游戏有随机掉落材料的设定,服务器在加载掉落物的过程中很容易会出现掉帧、卡顿的情况。某些玩家甚至在游戏1~2时后就出现服务器崩溃的情况…...

C++_list
目录 一、模拟实现list 1、list的基本结构 2、迭代器封装 2.1 正向迭代器 2.2 反向迭代器 3、指定位置插入 4、指定位置删除 5、结语 前言: list是STL(标准模板库)中的八大容器之一,而STL属于C标准库的一部分,因此在C中可以直接使用…...
使用docker部署mongodb
1.创建目录 mkdir -p /opt/mongodb/{data,logs,config} 2.创建配置文件 进入目录 cd /opt写入配置 vim mongod.conf 内容如下 systemLog:# MongoDB发送所有日志输出的目标指定为文件destination: file# mongod或mongos应向其发送所有诊断日志记录信息的日志文件的路径path:…...

C#,打印漂亮的贝尔三角形(Bell Triangle)的源程序
以贝尔数为基础,参考杨辉三角形,也可以生成贝尔三角形(Bell triangle),也称为艾特肯阵列(Aitkens Array),皮埃斯三角形(Peirce Triangle)。 贝尔三角形的构造…...
开源电商系统
前言 做电商永不过时,但形式会不断变化。任何赚钱的事情大体都分为两大块:生产和销售。两者是并重的,首先要有好的产品,其次是做好推广运营和销售渠道建设。对于小微企业来说,前期如果能通过销售赚到第一桶金…...

责任链模式在java中的实现
1 总览 2 概念 避免请求发送者与接收者耦合在一起,让多个对象都有可能接收请求,将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理它为止。职责链模式是一种对象行为型模式。 3 实现 公共部分,一个系…...

粤嵌Gec6818---小项目功能实现简单步骤(RFID+图片显示+音乐+视频)
项目设计开发环境: (1)VMware Workstation Pro软件 (2)ubuntu12 .04 (能交叉编译就行) (3)SecureCRT (4)代码编译器(notepad/Vis…...
opencv学习 特征提取
内容来源于《opencv4应用开发入门、进阶与工程化实践》 图像金字塔 略 拉普拉斯金字塔 对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。 …...

关于maven项目构建的解释
在Idea中使用模块化构建项目 项目介绍: sky-take-out sky-common pom.xml sky-pojo pom.xml sky-server pom.xml pom.xml 说明 sky-server依赖sky-pojo和sky-common,继承sky-take-outsky-pojo继承sky-take-outsky-common继承sky-take-out 由于Idea编…...

IMU/捷联惯导常见的术语,以及性能评价标准(附Python解析代码)
0. 简介 现在的机器人领域在普遍使用IMU(惯性导航单元)。该系统有三个加速度传感器与三个角速度传感器(陀螺)组成,加速度计用来感受飞机相对于地垂线的加速度分量,陀螺仪用来感知飞机的角速率变化…...
Debezium发布历史98
原文地址: https://debezium.io/blog/2020/11/12/debezium-1-3-1-final-released/ 欢迎关注留言,我是收集整理小能手,工具翻译,仅供参考,笔芯笔芯. Debezium 1.3.1.Final 发布 十一月 12, 2020 作者: 克里…...

APUE学习之进程间通信(IPC)(下篇)
目录 一、进程间通信(IPC) 二、信号量(Semaphore) 1、基本概念 2、同步关系与互斥关系 3、临界区与临界资源 4、信号量的工作原理 5、信号量编程 6、实战演练 三、共享内存(Shared Memory) 1、…...
【Java 设计模式】行为型之中介者模式
文章目录 1. 定义2. 应用场景3. 代码实现结语 中介者模式(Mediator Pattern)是一种行为型设计模式,用于通过一个中介对象来集中管理多个对象之间的交互关系,从而降低对象之间的耦合度。中介者模式通过将对象之间的通信委托给中介者…...

MySql 慢SQL配置,查询,处理
一.慢SQL配置相关 1.查看慢SQL是否开启 执行下面命令查看是否开启慢SQL show variables like %slow_query_log; 复制代码 OFF: 未开启ON: 2.打开慢SQL配置 执行下面的命令开启慢查询日志 set global slow_query_logON; 复制代码 3.修改慢查询阈值 前面介绍了SQL执行到达了…...

算法:分界线
一、算法描述 电视剧《分界线》里面有一个片段,男主为了向警察透露案件细节,且不暴露自己,于是将报刊上的字 剪切下来,剪拼成匿名信。 现在有一名举报人,希望借鉴这种手段,使用英文报刊完成举报操作。 但为…...

STM32单片机基本原理与应用(四)
直流电机驱动控制原理 1、电机正反转控制 在STM32中,直流电机的正反转控制主要通过改变电机输入电源的极性来实现。当电机的电压极性发生变化时,电机的旋转方向也会相应改变。在硬件电路中,可以通过继电器或晶体管等电子开关来切换电机的电源…...

elk之安装和简单配置
写在前面 本文看下elk的安装和简单配置,安装我们会尝试通过不同的方式来完成,也会介绍如何使用docker,docker-compose安装。 1:安装es 1.1:安装单实例 下载es安装包 在这里 下载,下载后解压到某个目录…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...