当前位置: 首页 > news >正文

opencv学习 特征提取

内容来源于《opencv4应用开发入门、进阶与工程化实践》  

图像金字塔

拉普拉斯金字塔

对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。

详情可查看https://zhuanlan.zhihu.com/p/80362140

图像金字塔融合

 拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留的是残差,为图像还原做准备。

根据拉普拉斯金字塔的定义可以知道,拉普拉斯金字塔的每一层都是一个高斯差分图像。:

原图 = 拉普拉斯金字塔图L0层 + expand(高斯金字塔G1层),也就是说,可以基于低分辨率的图像与它的高斯差分图像,重建生成一个高分辨率的图像。

详情参考https://zhuanlan.zhihu.com/p/454085730的图像融合部分,讲的很好。

步骤:

  1. 生成苹果、橘子的高斯金字塔G_{L}G_{R}
  2.  求苹果、橘子的的拉普拉斯金字塔L_{apple}L_{orange}
  3. 求mask的高斯金字塔G_{mask}
  4. 在每个尺度(分辨率)下,用G_{mask}拼接L_{apple}L_{orange},最终得到拼接的拉普拉斯金字塔L_{fused}
  5. 生成最低分辨率的起始图(都选取最低分辨率下的G_{L}G_{R} 根据同分辨率下G_{mask} 进行拼接,得到最低分辨率下的拼接结果 O_{min}
  6. O_{min}开始,利用L_{fused}得到最高分辨率的拼接结果

示例代码:

int level = 3;
Mat smallestLevel;
Mat blend(Mat &a, Mat &b, Mat &m) {int width = a.cols;int height = a.rows;Mat dst = Mat::zeros(a.size(), a.type());Vec3b rgb1;Vec3b rgb2;int r1 = 0, g1 = 0, b1 = 0;int r2 = 0, g2 = 0, b2 = 0;int red = 0, green = 0, blue = 0;int w = 0;float w1 = 0, w2 = 0;for (int row = 0; row<height; row++) {for (int col = 0; col<width; col++) {rgb1 = a.at<Vec3b>(row, col);rgb2 = b.at<Vec3b>(row, col);w = m.at<uchar>(row, col);w2 = w / 255.0f;w1 = 1.0f - w2;b1 = rgb1[0] & 0xff;g1 = rgb1[1] & 0xff;r1 = rgb1[2] & 0xff;b2 = rgb2[0] & 0xff;g2 = rgb2[1] & 0xff;r2 = rgb2[2] & 0xff;red = (int)(r1*w1 + r2*w2);green = (int)(g1*w1 + g2*w2);blue = (int)(b1*w1 + b2*w2);// outputdst.at<Vec3b>(row, col)[0] = blue;dst.at<Vec3b>(row, col)[1] = green;dst.at<Vec3b>(row, col)[2] = red;}}return dst;
}vector<Mat> buildGaussianPyramid(Mat &image) {vector<Mat> pyramid;Mat copy = image.clone();pyramid.push_back(image.clone());Mat dst;for (int i = 0; i<level; i++) {pyrDown(copy, dst, Size(copy.cols / 2, copy.rows / 2));dst.copyTo(copy);pyramid.push_back(dst.clone());}smallestLevel = dst;return pyramid;
}vector<Mat> buildLapacianPyramid(Mat &image) {vector<Mat> lp;Mat temp;Mat copy = image.clone();Mat dst;for (int i = 0; i<level; i++) {pyrDown(copy, dst, Size(copy.cols / 2, copy.rows / 2));pyrUp(dst, temp, copy.size());Mat lapaian;subtract(copy, temp, lapaian);lp.push_back(lapaian);copy = dst.clone();}smallestLevel = dst;return lp;
}
void FeatureVectorOps::pyramid_blend_demo(Mat &apple, Mat &orange) {Mat mc = imread("D:/images/mask.png");if (apple.empty() || orange.empty()) {return;}imshow("苹果图像", apple);imshow("橘子图像", orange);vector<Mat> la = buildLapacianPyramid(apple);Mat leftsmallestLevel;smallestLevel.copyTo(leftsmallestLevel);vector<Mat> lb = buildLapacianPyramid(orange);Mat rightsmallestLevel;smallestLevel.copyTo(rightsmallestLevel);Mat mask;cvtColor(mc, mask, COLOR_BGR2GRAY);vector<Mat> maskPyramid = buildGaussianPyramid(mask);Mat samllmask;smallestLevel.copyTo(samllmask);Mat currentImage = blend(leftsmallestLevel, rightsmallestLevel, samllmask);imwrite("D:/samll.png", currentImage);// 重建拉普拉斯金字塔vector<Mat> ls;for (int i = 0; i<level; i++) {Mat a = la[i];Mat b = lb[i];Mat m = maskPyramid[i];ls.push_back(blend(a, b, m));}// 重建原图Mat temp;for (int i = level - 1; i >= 0; i--) {pyrUp(currentImage, temp, ls[i].size());add(temp, ls[i], currentImage);}imshow("高斯金子图像融合重建-图像", currentImage);
}

Harris角点检测

角点是图像中亮度变化最强的地方,反映了图像的本质特征。

图像的角点在各个方向上都有很强的梯度变化。

亚像素级别的角点检测

详细请参考https://www.cnblogs.com/qq21497936/p/13096048.html

大概理解是角点一般在边缘上,边缘的梯度与沿边缘方向的的向量正交,也就是内积为0,根据内积为零,角点周围能列出一个方程组,方程组的解就是角点坐标。

opencv亚像素级别定位函数API:

void cv::cornerSubPix(InputArray imageInputOutputArray corners //输入整数角点坐标,输出浮点数角点坐标Size winSize //搜索窗口Size zeroZone TermCriteria criteria //停止条件
)

 示例代码

void FeatureVectorOps::corners_sub_pixels_demo(Mat &image) {Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);int maxCorners = 400;double qualityLevel = 0.01;std::vector<Point2f> corners;goodFeaturesToTrack(gray, corners, maxCorners, qualityLevel, 5, Mat(), 3, false, 0.04);Size winSize = Size(5, 5);Size zeroZone = Size(-1, -1);//opencv迭代终止条件类TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.001);cornerSubPix(gray, corners, winSize, zeroZone, criteria);for (size_t t = 0; t < corners.size(); t++) {printf("refined Corner: %d, x:%.2f, y:%.2f\n", t, corners[t].x, corners[t].y);}
}

HOG特征描述子

详细请参考:https://baijiahao.baidu.com/s?id=1646997581304332534&wfr=spider&for=pc&searchword=HOG%E7%89%B9%E5%BE%81%E6%8F%8F%E8%BF%B0%E5%AD%90

讲的很好。

大概就是以一种特殊的直方图来表示图像特征,直方图存储的是梯度的方向和幅值(x轴是方向,y轴是幅值且加权)。

示例代码:

virtual void cv::HOGDescriptor::compute(InputArray imgstd::vector<float> & descriptorsSize winStride=Size()Size padding=Size()const std::vector<Point> &locations = std::vector<Point>()
)void FeatureVectorOps::hog_feature_demo(Mat &image) {Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);HOGDescriptor hogDetector;std::vector<float> hog_descriptors;hogDetector.compute(gray, hog_descriptors, Size(8, 8), Size(0, 0));std::cout << hog_descriptors.size() << std::endl;for (size_t t = 0; t < hog_descriptors.size(); t++) {std::cout << hog_descriptors[t] << std::endl;}
}

HOG特征行人检测

opencv基于HOG行人特征描述子的检测函数:

void HOGDescriptor::detectMultiScale(InputArray img,vector<Rect>& foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(),double scale=1.05,double finalThreshold=2.0,bool useMeanshiftGrouping=false
)
//示例代码
void FeatureVectorOps::hog_detect_demo(Mat &image) {HOGDescriptor *hog = new HOGDescriptor();hog->setSVMDetector(hog->getDefaultPeopleDetector());vector<Rect> objects;hog->detectMultiScale(image, objects, 0.0, Size(4, 4), Size(8, 8), 1.25);for (int i = 0; i < objects.size(); i++) {rectangle(image, objects[i], Scalar(0, 0, 255), 2, 8, 0);}imshow("HOG行人检测", image);
}

ORB特征描述子

没看懂。

描述子匹配

暴力匹配:

再使用暴力匹配之前先创建暴力匹配器:

static Ptr<BFMatcher> cv::BFMatcher::create(int normType=NORM_L2 //计算描述子暴力匹配时采用的计算方法bool crossCheck=false //是否使用交叉验证
)

调用暴力匹配的匹配方法,有两种,最佳匹配和KNN匹配

void cv::DescriptorMatch::match(InputArray queryDescriptorsInputArray trainDescriptorsstd::vector<DMatch> & matchesInputArray mask=noArray
)void cv::DescriptorMatch::knnMatch(InputArray queryDescriptorsInputArray trainDescriptorsstd::vector<DMatch> & matchesint kInputArray mask=noArraybool compactResult =false
)
FLANN匹配:
cv::FlannBasedMatcher::FlannBasedMatcher(const Ptr<flann::IndexParams> & indexParams=makePtr<flann::KDTreeIndexParams>()const Ptr<flann::SearchParams> & searchParams=makePtr<flann::SearchParams>()
)

示例代码:

void FeatureVectorOps::orb_match_demo(Mat &box, Mat &box_in_scene) {// ORB特征提取auto orb_detector = ORB::create();std::vector<KeyPoint> box_kpts;std::vector<KeyPoint> scene_kpts;Mat box_descriptors, scene_descriptors;orb_detector->detectAndCompute(box, Mat(), box_kpts, box_descriptors);orb_detector->detectAndCompute(box_in_scene, Mat(), scene_kpts, scene_descriptors);// 暴力匹配auto bfMatcher = BFMatcher::create(NORM_HAMMING, false);std::vector<DMatch> matches;bfMatcher->match(box_descriptors, scene_descriptors, matches);Mat img_orb_matches;drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_orb_matches);imshow("ORB暴力匹配演示", img_orb_matches);// FLANN匹配auto flannMatcher = FlannBasedMatcher(new flann::LshIndexParams(6, 12, 2));flannMatcher.match(box_descriptors, scene_descriptors, matches);Mat img_flann_matches;drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_flann_matches);namedWindow("FLANN匹配演示", WINDOW_FREERATIO);cv::namedWindow("FLANN匹配演示", cv::WINDOW_NORMAL);imshow("FLANN匹配演示", img_flann_matches);
}

基于特征的对象检测

特征描述子匹配之后,可以根据返回的各个DMatch中的索引得到关键点对,然后拟合生成从对象到场景的变换矩阵H。根据矩阵H可以求得对象在场景中的位置,从而完成基于特征的对象检测。

opencv中求得单应性矩阵的API:

Mat cv::findHomograph(InputArray srcPointsOutputArray dstPointsint method=0double ransacReprojThreshold=3OutputArray mask=noArray()const int maxIters=2000;const double confidence=0.995
)

有了变换矩阵H ,可以运用透视变换函数求得场景中对象的四个点坐标并绘制出来。

透视变换函数:

void cv::perspectiveTransform(InputArray srcOutputArray dstInputArray m
)

示例代码:

void FeatureVectorOps::find_known_object(Mat &book, Mat &book_on_desk) {// ORB特征提取auto orb_detector = ORB::create();std::vector<KeyPoint> box_kpts;std::vector<KeyPoint> scene_kpts;Mat box_descriptors, scene_descriptors;orb_detector->detectAndCompute(book, Mat(), box_kpts, box_descriptors);orb_detector->detectAndCompute(book_on_desk, Mat(), scene_kpts, scene_descriptors);// 暴力匹配auto bfMatcher = BFMatcher::create(NORM_HAMMING, false);std::vector<DMatch> matches;bfMatcher->match(box_descriptors, scene_descriptors, matches);// 好的匹配std::sort(matches.begin(), matches.end());const int numGoodMatches = matches.size() * 0.15;matches.erase(matches.begin() + numGoodMatches, matches.end());Mat img_bf_matches;drawMatches(book, box_kpts, book_on_desk, scene_kpts, matches, img_bf_matches);imshow("ORB暴力匹配演示", img_bf_matches);// 单应性求Hstd::vector<Point2f> obj_pts;std::vector<Point2f> scene_pts;for (size_t i = 0; i < matches.size(); i++){//-- Get the keypoints from the good matchesobj_pts.push_back(box_kpts[matches[i].queryIdx].pt);scene_pts.push_back(scene_kpts[matches[i].trainIdx].pt);}Mat H = findHomography(obj_pts, scene_pts, RANSAC);std::cout << "RANSAC estimation parameters: \n" << H << std::endl;std::cout << std::endl;H = findHomography(obj_pts, scene_pts, RHO);std::cout << "RHO estimation parameters: \n" << H << std::endl;std::cout << std::endl;H = findHomography(obj_pts, scene_pts, LMEDS);std::cout << "LMEDS estimation parameters: \n" << H << std::endl;// 变换矩阵得到目标点std::vector<Point2f> obj_corners(4);obj_corners[0] = Point(0, 0); obj_corners[1] = Point(book.cols, 0);obj_corners[2] = Point(book.cols, book.rows); obj_corners[3] = Point(0, book.rows);std::vector<Point2f> scene_corners(4);perspectiveTransform(obj_corners, scene_corners, H);// 绘制结果Mat dst;line(img_bf_matches, scene_corners[0] + Point2f(book.cols, 0), scene_corners[1] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[1] + Point2f(book.cols, 0), scene_corners[2] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[2] + Point2f(book.cols, 0), scene_corners[3] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[3] + Point2f(book.cols, 0), scene_corners[0] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);//-- Show detected matchesnamedWindow("基于特征的对象检测", cv::WINDOW_NORMAL);imshow("基于特征的对象检测", img_bf_matches);
}

相关文章:

opencv学习 特征提取

内容来源于《opencv4应用开发入门、进阶与工程化实践》 图像金字塔 略 拉普拉斯金字塔 对输入图像进行reduce操作会生成不同分辨率的图像&#xff0c;对这些图像进行expand操作&#xff0c;然后使用reduce减去expand之后的结果&#xff0c;就会得到拉普拉斯金字塔图像。 …...

关于maven项目构建的解释

在Idea中使用模块化构建项目 项目介绍&#xff1a; sky-take-out sky-common pom.xml sky-pojo pom.xml sky-server pom.xml pom.xml 说明 sky-server依赖sky-pojo和sky-common&#xff0c;继承sky-take-outsky-pojo继承sky-take-outsky-common继承sky-take-out 由于Idea编…...

IMU/捷联惯导常见的术语,以及性能评价标准(附Python解析代码)

0. 简介 现在的机器人领域在普遍使用IMU&#xff08;惯性导航单元&#xff09;。该系统有三个加速度传感器与三个角速度传感器&#xff08;陀螺&#xff09;组成&#xff0c;加速度计用来感受飞机相对于地垂线的加速度分量&#xff0c;陀螺仪用来感知飞机的角速率变化&#xf…...

Debezium发布历史98

原文地址&#xff1a; https://debezium.io/blog/2020/11/12/debezium-1-3-1-final-released/ 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. Debezium 1.3.1.Final 发布 十一月 12, 2020 作者&#xff1a; 克里…...

APUE学习之进程间通信(IPC)(下篇)

目录 一、进程间通信&#xff08;IPC&#xff09; 二、信号量&#xff08;Semaphore&#xff09; 1、基本概念 2、同步关系与互斥关系 3、临界区与临界资源 4、信号量的工作原理 5、信号量编程 6、实战演练 三、共享内存&#xff08;Shared Memory&#xff09; 1、…...

【Java 设计模式】行为型之中介者模式

文章目录 1. 定义2. 应用场景3. 代码实现结语 中介者模式&#xff08;Mediator Pattern&#xff09;是一种行为型设计模式&#xff0c;用于通过一个中介对象来集中管理多个对象之间的交互关系&#xff0c;从而降低对象之间的耦合度。中介者模式通过将对象之间的通信委托给中介者…...

MySql 慢SQL配置,查询,处理

一.慢SQL配置相关 1.查看慢SQL是否开启 执行下面命令查看是否开启慢SQL show variables like %slow_query_log; 复制代码 OFF: 未开启ON: 2.打开慢SQL配置 执行下面的命令开启慢查询日志 set global slow_query_logON; 复制代码 3.修改慢查询阈值 前面介绍了SQL执行到达了…...

算法:分界线

一、算法描述 电视剧《分界线》里面有一个片段&#xff0c;男主为了向警察透露案件细节&#xff0c;且不暴露自己&#xff0c;于是将报刊上的字 剪切下来&#xff0c;剪拼成匿名信。 现在有一名举报人&#xff0c;希望借鉴这种手段&#xff0c;使用英文报刊完成举报操作。 但为…...

STM32单片机基本原理与应用(四)

直流电机驱动控制原理 1、电机正反转控制 在STM32中&#xff0c;直流电机的正反转控制主要通过改变电机输入电源的极性来实现。当电机的电压极性发生变化时&#xff0c;电机的旋转方向也会相应改变。在硬件电路中&#xff0c;可以通过继电器或晶体管等电子开关来切换电机的电源…...

elk之安装和简单配置

写在前面 本文看下elk的安装和简单配置&#xff0c;安装我们会尝试通过不同的方式来完成&#xff0c;也会介绍如何使用docker&#xff0c;docker-compose安装。 1&#xff1a;安装es 1.1&#xff1a;安装单实例 下载es安装包 在这里 下载&#xff0c;下载后解压到某个目录…...

springboot(ssm环保网站 绿色环保宣传系统Java系统

springboot(ssm环保网站 绿色环保宣传系统Java系统 开发语言&#xff1a;Java 框架&#xff1a;springboot&#xff08;可改ssm&#xff09; vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff0…...

【MBtiles数据索引和服务发布】GeoServer改造Springboot番外系列二

xyz地图服务访问示例&#xff1a;http://192.168.1.240:8081/gmserver/raster/xyz/firstWP:Imagery-raster/{z}/{x}/{y}.jpg 访问示例如下&#xff1a; mbtiles目录结构 根据z&#xff0c;x&#xff0c;y获取对应mbtiles文件路径的工具方法 说明&#xff1a;重点是使用getMb…...

Redis抓取数据到Logstash再推到Elasticsearch集群

一、安装Logstash 前面安装过Logstash了,不做解释直接跳过 参考:上一篇文章 二、配置Logstash 在logstash目录下,编辑我们之前的配置文件logstash.conf vim logstash.confinput、output字面意思,从redis去拿取数据,输出到Elasticsearch data_type:数据类型为list k…...

【代码随想录-链表】反转链表

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…...

32GPIO输入LED闪烁蜂鸣器

一.GPIO简介 所有的GPIO都挂载到APB2上&#xff0c;每个GPIO有&#xff11;&#xff16;个引脚 内核可以通过APB&#xff12;对寄存器进行读写&#xff0c;寄存器都是32位的&#xff0c;但每个引脚端口只有&#xff11;&#xff16;位 驱动器用于增加信号的驱动能力 二.具体…...

Qt|QPushButton控件讲解

前提 按钮分为了四种状态&#xff1a;常态、聚焦、按下、禁用 前一段时间更新了MFC框架下CButton的自绘。因为MFC框架下的按钮限制性很高&#xff0c;所以只能由自绘实现各种风格&#xff0c;但是QT框架完美的解决了这个问题&#xff0c;我们只需要了解如何调用&#xff0c;就…...

再学webpack

1 优化 webpack 打包体积的思路 优化 webpack 打包体积的思路包括&#xff1a; 提取第三方库或通过引用外部文件的方式引入第三方库&#xff1a;将第三方库单独打包&#xff0c;并通过 CDN 引入&#xff0c;减少打包体积。使用代码压缩插件&#xff1a;例如 UglifyJsPlugin&a…...

systemd:service与target使用及相关命令

文章目录 一、 unit1.1 unit常用命令 二、 service系统服务2.1 unit service配置文件2.1.1 [Unit]区块2.1.2 [Service]区块2.1.3 [Install]区块2.1.4 示例介绍 2.2 service常用命令 三、target3.1 tartget有关命令 四、其他系统命令4.1 systemctl 相关系统管理命令4.2 journalc…...

FairGuard游戏加固入选《CCSIP 2023中国网络安全行业全景册(第六版)》

2024年1月24日&#xff0c; FreeBuf咨询正式发布《CCSIP 2023中国网络安全行业全景册(第六版)》。本次发布的全景图&#xff0c;共计展示20个一级分类、108个细分安全领域&#xff0c;旨在为广大企业提供网络安全产品选型参考&#xff0c;帮助企业了解中国网络安全技术与市场的…...

文心一言 VS ChatGPT :谁是更好的选择?

前言 目前各种大模型、人工智能相关内容覆盖了朋友圈已经各种媒体平台&#xff0c;对于Ai目前来看只能说各有千秋。GPT的算法迭代是最先进的&#xff0c;但是它毕竟属于国外产品&#xff0c;有着网络限制、注册限制、会员费高昂等弊端&#xff0c;难以让国内用户享受。文心一言…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...