当前位置: 首页 > news >正文

大数据分析案例-基于随机森林算法构建电影票房预测模型

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


喜欢大数据分析项目的小伙伴,希望可以多多支持该系列的其他文章

大数据分析案例合集
大数据分析案例-基于随机森林算法预测人类预期寿命
大数据分析案例-基于随机森林算法的商品评价情感分析
大数据分析案例-用RFM模型对客户价值分析(聚类)
大数据分析案例-对电信客户流失分析预警预测
大数据分析案例-基于随机森林模型对北京房价进行预测
大数据分析案例-基于RFM模型对电商客户价值分析
大数据分析案例-基于逻辑回归算法构建垃圾邮件分类器模型
大数据分析案例-基于决策树算法构建员工离职预测模型

大数据分析案例-基于KNN算法对茅台股票进行预测

大数据分析案例-基于多元线性回归算法构建广告投放收益模型
大数据分析案例-基于随机森林算法构建返乡人群预测模型
大数据分析案例-基于决策树算法构建金融反欺诈分类模型

目录

1.项目背景

2.项目简介

2.1项目说明

2.2数据说明

2.3技术工具

3.算法原理

4.项目实施步骤

4.1理解数据

4.2数据预处理

4.3探索性数据分析

4.4特征工程

4.5模型构建

4.6模型评估

5.实验总结

源代码


1.项目背景

        电影票房预测一直是电影产业中的一个重要问题,对于制片方、发行方和影院等利益相关者而言,准确地预测电影票房可以帮助他们做出更明智的决策。在电影产业中,投资决策、市场营销策略、排片安排等方面的决策都受到电影票房预测的影响。因此,构建一种准确可靠的电影票房预测模型对于电影产业的发展具有重要意义。

研究背景主要包括以下几个方面:

  1. 市场竞争激烈: 电影市场竞争激烈,每年推出大量新片。在这种竞争环境下,能够提前了解一部电影可能取得的票房情况,对于选择上映时机、进行市场宣传、确定投资规模等方面至关重要。

  2. 复杂多变的影响因素: 影响电影票房的因素众多,包括但不限于演员阵容、导演水平、电影类型、上映时间、市场宣传、观众口碑等。这些因素之间存在复杂的相互关系,传统的分析方法难以全面考虑这些因素的综合影响。

  3. 数据科学的应用需求: 随着数据科学和机器学习技术的发展,利用大量的电影数据进行建模和预测成为可能。随机森林算法是一种集成学习方法,具有高准确性和强大的泛化能力,特别适用于处理大规模、高维度的数据,因此成为构建电影票房预测模型的理想选择。

2.项目简介

2.1项目说明

        本研究旨在利用随机森林算法构建一种高效的电影票房预测模型,通过综合考虑各种影响因素,提高预测准确性,为电影产业相关方提供科学的决策依据。通过该研究,可以更好地理解影响电影票房的关键因素,为电影从业者提供更全面的市场分析和预测服务。

2.2数据说明

        该数据集来源于kaggle,该数据集包含1995年至2018年上映的电影类型统计数据,原始数据集共有300条,9个变量,各变量含义解释如下:

Genre:电影的类别或类型。(分类)

Year:电影发行的年份。(数字)

Movies Released :特定类型和年份发行的电影数量。(数字)

Gross:该类型和年份的电影产生的总收入。(数字)

Tickets Sold:该类型和年份的电影售出门票总数。(数字)

Inflation-Adjusted Gross:考虑到货币价值随时间的变化,根据通货膨胀进行调整的总收入。(数字)

Top Movie:该类型和年份中票房最高的电影的标题。(文本)

Top Movie Gross (That Year):该类型和年份中票房最高的电影产生的总收入。(数字)

Top Movie Inflation-Adjusted Gross (That Year):根据该类型和年份的通货膨胀调整后票房最高的电影的总收入。(数字)

2.3技术工具

Python版本:3.9

代码编辑器:jupyter notebook

3.算法原理

        随机森林是一种有监督学习算法。就像它的名字一样,它创建了一个森林,并使它拥有某种方式随机性。所构建的“森林”是决策树的集成,大部分时候都是用“bagging”方法训练的。bagging 方法,即 bootstrapaggregating,采用的是随机有放回的选择训练数据然后构造分类器,最后组合学习到的模型来增加整体的效果。简而言之,随机森林建立了多个决策树,并将它们合并在一起以获得更准确和稳定的预测。其一大优势在于它既可用于分类,也可用于回归问题,这两类问题恰好构成了当前的大多数机器学习系统所需要面对的。

        随机森林分类器使用所有的决策树分类器以及 bagging 分类器的超参数来控制整体结构。与其先构建 bagging分类器,并将其传递给决策树分类器,我们可以直接使用随机森林分类器类,这样对于决策树而言,更加方便和优化。要注意的是,回归问题同样有一个随机森林回归器与之相对应。

        随机森林算法中树的增长会给模型带来额外的随机性。与决策树不同的是,每个节点被分割成最小化误差的最佳指标,在随机森林中我们选择随机选择的指标来构建最佳分割。因此,在随机森林中,仅考虑用于分割节点的随机子集,甚至可以通过在每个指标上使用随机阈值来使树更加随机,而不是如正常的决策树一样搜索最佳阈值。这个过程产生了广泛的多样性,通常可以得到更好的模型。

4.项目实施步骤

4.1理解数据

导入数据分析常用的第三方库并加载数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.subplots as spdf = pd.read_csv("movies_data.csv")
df.head()

查看数据大小

 

查看数据基本信息

查看数值型变量的描述性统计

查看非数值型变量的描述性统计

4.2数据预处理

统计缺失值情况

从结果来看,不存在缺失值 

检测是否存在重复值 

 

结果为False,说明不存在

4.3探索性数据分析

基于门票销售和发行数量的流行类型

# 基于门票销售和发行数量的流行类型
# 根据上映的电影数量找到受欢迎的类型
genre_movies_released = df.groupby('Genre')['Movies Released'].sum().sort_values(ascending=False)
print("Popular genres based on Movies Released:")
print(genre_movies_released.head())
# 根据售出的门票总数来查找受欢迎的类型
genre_tickets_sold = df.groupby('Genre')['Tickets Sold'].sum().sort_values(ascending=False)
print("\nPopular genres based on Tickets Sold:")
print(genre_tickets_sold.head())
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
genre_movies_released.head().plot(kind='bar', ax=axes[0], color='skyblue')
axes[0].set_title('Top Genres by Movies Released')
axes[0].set_ylabel('Total Movies Released')
genre_tickets_sold.head().plot(kind='bar', ax=axes[1], color='lightcoral')
axes[1].set_title('Top Genres by Tickets Sold')
axes[1].set_ylabel('Total Tickets Sold')
plt.tight_layout()
plt.show()

类型和收益分析

# 类型和收益分析
genre_gross = df.groupby('Genre')['Gross'].sum().sort_values(ascending=False).head()
genre_inflation_adjusted_gross = df.groupby('Genre')['Inflation-Adjusted Gross'].sum().sort_values(ascending=False).head()
genre_top_movie_gross = df.groupby('Genre')['Top Movie Gross (That Year)'].max().sort_values(ascending=False).head()
fig = make_subplots(rows=3, cols=1, subplot_titles=['Top Genres by Gross Revenue', 'Top Genres by Inflation-Adjusted Gross Revenue', 'Top Genres by Top Movie Gross (That Year)'])
fig.add_trace(go.Bar(x=genre_gross.index, y=genre_gross.values, name='Gross Revenue', marker_color='skyblue'), row=1, col=1)
fig.add_trace(go.Bar(x=genre_inflation_adjusted_gross.index, y=genre_inflation_adjusted_gross.values, name='Inflation-Adjusted Gross Revenue', marker_color='lightcoral'), row=2, col=1)
fig.add_trace(go.Bar(x=genre_top_movie_gross.index, y=genre_top_movie_gross.values, name='Top Movie Gross (That Year)', marker_color='lightgreen'), row=3, col=1)
fig.update_layout(height=900, showlegend=False, title_text="Financial Success of Genres")
fig.update_xaxes(title_text="Genres", row=3, col=1)
fig.update_yaxes(title_text="Total Gross Revenue", row=1, col=1)
fig.update_yaxes(title_text="Total Inflation-Adjusted Gross Revenue", row=2, col=1)
fig.update_yaxes(title_text="Top Movie Gross (That Year)", row=3, col=1)
fig.show()

多年来的类型趋势和分析

# 多年来的类型趋势和分析
selected_genres = ['Action', 'Comedy', 'Drama', 'Adventure']
filtered_df = df[df['Genre'].isin(selected_genres)]
fig = px.line(filtered_df, x='Year', y='Movies Released', color='Genre',title='Movie Releases Over Time for Selected Genres',labels={'Movies Released': 'Number of Movies Released'},line_shape='linear')
fig.show()# 为不同年份的总收入创建一个交互式折线图
fig = px.line(filtered_df, x='Year', y='Gross', color='Genre',title='Gross Revenue Over Time for Selected Genres',labels={'Gross': 'Total Gross Revenue'},line_shape='linear')
fig.show()

一段时间内选定类型中票房最高的电影

# 一段时间内选定类型中票房最高的电影
selected_genres = ['Action', 'Comedy', 'Drama', 'Adventure']
filtered_df = df[df['Genre'].isin(selected_genres)]
# 创建一个交互式条形图来显示每种类型和年份中票房最高的电影
fig = px.bar(filtered_df, x='Year', y='Top Movie Gross (That Year)', color='Genre',title='Highest-Grossing Movies in Selected Genres Over Time',labels={'Top Movie Gross (That Year)': 'Gross Revenue'},text='Top Movie', height=500)
fig.update_traces(textposition='outside')
fig.show()

多年来的类型分布

# 多年来的类型分布
# 多年来类型分布的堆叠区域图
fig = px.area(df, x='Year', y='Movies Released', color='Genre',title='Genre Distribution Over the Years',labels={'Movies Released': 'Number of Movies Released'},height=500)
fig.show()

受众参与分析

# 受众参与分析
# 观众参与的散点图
fig = px.scatter(df, x='Tickets Sold', y='Gross', color='Genre',title='Audience Engagement by Genre',labels={'Tickets Sold': 'Number of Tickets Sold', 'Gross': 'Total Gross Revenue'},height=500)
fig.show()

历年最佳电影表现

# 历年最佳电影表现
# 随时间变化的顶级电影表现的折线图
fig = px.line(df, x='Year', y='Top Movie Gross (That Year)', color='Genre',title='Top Movie Performance Over Time',labels={'Top Movie Gross (That Year)': 'Gross Revenue'},height=500)
fig.show()

按类型划分的每部电影平均收入

# 按类型划分的每部电影平均收入
# 按类型计算每部电影的平均收入
df['Average Revenue per Movie'] = df['Gross'] / df['Movies Released']
# 按类型划分的每部电影平均收入柱状图
fig = px.bar(df, x='Genre', y='Average Revenue per Movie',title='Average Revenue per Movie by Genre',labels={'Average Revenue per Movie': 'Average Revenue per Movie'},height=500)
fig.show()

不同类型的门票销售和发行

# 不同类型的门票销售和发行
fig = px.violin(df, x='Genre', y='Tickets Sold',title='Genre-wise Ticket Sales Distribution',labels={'Tickets Sold': 'Number of Tickets Sold'},height=500)
fig.show()

通货膨胀调整后总收益的类型趋势

# 通货膨胀调整后总收益的类型趋势
fig = px.line(df, x='Year', y='Inflation-Adjusted Gross', color='Genre',title='Genre Trends in Inflation-Adjusted Gross Revenue',labels={'Inflation-Adjusted Gross': 'Inflation-Adjusted Gross Revenue'},height=500)
fig.show()

每个类型和收入的顶级电影

# 每个类型和收入的顶级电影
unique_top_movies_count = df.groupby('Genre')['Top Movie'].nunique().sort_values(ascending=False)
top_movies_gross = df.groupby('Top Movie')['Top Movie Gross (That Year)'].max().sort_values(ascending=False).head(10)
fig = sp.make_subplots(rows=3, cols=1, subplot_titles=['Count of Unique Top Movies per Genre', 'Top Movies with the Highest Gross Revenue', 'Distribution of Gross Revenue for Top Movies'])
fig.add_trace(go.Bar(x=unique_top_movies_count.index, y=unique_top_movies_count.values),row=1, col=1)
fig.add_trace(go.Bar(x=top_movies_gross.index, y=top_movies_gross.values),row=2, col=1)
fig.add_trace(go.Box(x=df['Top Movie'], y=df['Top Movie Gross (That Year)']),row=3, col=1)
fig.update_layout(height=1000, showlegend=False, title_text="Top Movie Analysis")
fig.show()

4.4特征工程

导入第三方库并准备建模需要的数据

from sklearn.model_selection import KFold, cross_val_predict
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.metrics import mean_squared_error
dff = df.copy()
categorical_features = ['Genre']  # 假设“类型”是一个分类变量
numerical_features = ['Year', 'Movies Released']
target_variable = 'Tickets Sold'# 筛选DataFrame以仅包含相关列
data = df[['Year', 'Movies Released', 'Genre', 'Tickets Sold', 'Gross']]# 将数据拆分为特征和目标变量
X = data[['Year', 'Movies Released', 'Genre', 'Gross']]
y = data[target_variable]

4.5模型构建

初始化模型,创建管道

# 定义分类编码的预处理器
preprocessor = ColumnTransformer(transformers=[('cat', OneHotEncoder(), categorical_features),],remainder='passthrough'
)# 初始化随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=42)# 创建带有预处理和模型的管道
pipeline = Pipeline([('preprocessor', preprocessor),('model', model)
])

交叉验证

# 初始化KFold以进行交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)
# 进行k-fold交叉验证并进行预测
predictions = cross_val_predict(pipeline, X, y, cv=kf)
# 评估模型性能
mse = mean_squared_error(y, predictions)
print(f'Mean Squared Error: {mse}')

 

4.6模型评估

# 可视化实际值和预测值
plt.scatter(y, predictions)
plt.xlabel('Actual Tickets Sold')
plt.ylabel('Predicted Tickets Sold')
plt.title('Actual vs. Predicted Tickets Sold')
plt.show()

5.实验总结

        本实验通过对电影数据进行数据可视化、特征工程、建模分析,使用随机森林算法构建预测模型。总的来说,基于随机森林算法构建的电影票房预测模型为电影产业提供了一种强大的工具。然而,对于实际应用,还需要综合考虑业务背景、市场趋势等因素,将模型预测结果与实际情况相结合,形成更全面的决策依据。

心得与体会:

通过这次Python项目实战,我学到了许多新的知识,这是一个让我把书本上的理论知识运用于实践中的好机会。原先,学的时候感叹学的资料太难懂,此刻想来,有些其实并不难,关键在于理解。

在这次实战中还锻炼了我其他方面的潜力,提高了我的综合素质。首先,它锻炼了我做项目的潜力,提高了独立思考问题、自我动手操作的潜力,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等

在此次实战中,我还学会了下面几点工作学习心态:

1)继续学习,不断提升理论涵养。在信息时代,学习是不断地汲取新信息,获得事业进步的动力。作为一名青年学子更就应把学习作为持续工作用心性的重要途径。走上工作岗位后,我会用心响应单位号召,结合工作实际,不断学习理论、业务知识和社会知识,用先进的理论武装头脑,用精良的业务知识提升潜力,以广博的社会知识拓展视野。

2)努力实践,自觉进行主角转化。只有将理论付诸于实践才能实现理论自身的价值,也只有将理论付诸于实践才能使理论得以检验。同样,一个人的价值也是透过实践活动来实现的,也只有透过实践才能锻炼人的品质,彰显人的意志。

3)提高工作用心性和主动性。实习,是开端也是结束。展此刻自我面前的是一片任自我驰骋的沃土,也分明感受到了沉甸甸的职责。在今后的工作和生活中,我将继续学习,深入实践,不断提升自我,努力创造业绩,继续创造更多的价值。

这次Python实战不仅仅使我学到了知识,丰富了经验。也帮忙我缩小了实践和理论的差距。在未来的工作中我会把学到的理论知识和实践经验不断的应用到实际工作中,为实现理想而努力。

源代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.subplots as spdf = pd.read_csv("movies_data.csv")
df.head()
df.shape
df.info()
df.describe()
df.describe(include='O')
df.isnull().sum()
any(df.duplicated())
# 基于门票销售和发行数量的流行类型
# 根据上映的电影数量找到受欢迎的类型
genre_movies_released = df.groupby('Genre')['Movies Released'].sum().sort_values(ascending=False)
print("Popular genres based on Movies Released:")
print(genre_movies_released.head())
# 根据售出的门票总数来查找受欢迎的类型
genre_tickets_sold = df.groupby('Genre')['Tickets Sold'].sum().sort_values(ascending=False)
print("\nPopular genres based on Tickets Sold:")
print(genre_tickets_sold.head())
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
genre_movies_released.head().plot(kind='bar', ax=axes[0], color='skyblue')
axes[0].set_title('Top Genres by Movies Released')
axes[0].set_ylabel('Total Movies Released')
genre_tickets_sold.head().plot(kind='bar', ax=axes[1], color='lightcoral')
axes[1].set_title('Top Genres by Tickets Sold')
axes[1].set_ylabel('Total Tickets Sold')
plt.tight_layout()
plt.show()
# 类型和收益分析
genre_gross = df.groupby('Genre')['Gross'].sum().sort_values(ascending=False).head()
genre_inflation_adjusted_gross = df.groupby('Genre')['Inflation-Adjusted Gross'].sum().sort_values(ascending=False).head()
genre_top_movie_gross = df.groupby('Genre')['Top Movie Gross (That Year)'].max().sort_values(ascending=False).head()
fig = make_subplots(rows=3, cols=1, subplot_titles=['Top Genres by Gross Revenue', 'Top Genres by Inflation-Adjusted Gross Revenue', 'Top Genres by Top Movie Gross (That Year)'])
fig.add_trace(go.Bar(x=genre_gross.index, y=genre_gross.values, name='Gross Revenue', marker_color='skyblue'), row=1, col=1)
fig.add_trace(go.Bar(x=genre_inflation_adjusted_gross.index, y=genre_inflation_adjusted_gross.values, name='Inflation-Adjusted Gross Revenue', marker_color='lightcoral'), row=2, col=1)
fig.add_trace(go.Bar(x=genre_top_movie_gross.index, y=genre_top_movie_gross.values, name='Top Movie Gross (That Year)', marker_color='lightgreen'), row=3, col=1)
fig.update_layout(height=900, showlegend=False, title_text="Financial Success of Genres")
fig.update_xaxes(title_text="Genres", row=3, col=1)
fig.update_yaxes(title_text="Total Gross Revenue", row=1, col=1)
fig.update_yaxes(title_text="Total Inflation-Adjusted Gross Revenue", row=2, col=1)
fig.update_yaxes(title_text="Top Movie Gross (That Year)", row=3, col=1)
fig.show()
# 多年来的类型趋势和分析
selected_genres = ['Action', 'Comedy', 'Drama', 'Adventure']
filtered_df = df[df['Genre'].isin(selected_genres)]
fig = px.line(filtered_df, x='Year', y='Movies Released', color='Genre',title='Movie Releases Over Time for Selected Genres',labels={'Movies Released': 'Number of Movies Released'},line_shape='linear')
fig.show()# 为不同年份的总收入创建一个交互式折线图
fig = px.line(filtered_df, x='Year', y='Gross', color='Genre',title='Gross Revenue Over Time for Selected Genres',labels={'Gross': 'Total Gross Revenue'},line_shape='linear')
fig.show()
# 一段时间内选定类型中票房最高的电影
selected_genres = ['Action', 'Comedy', 'Drama', 'Adventure']
filtered_df = df[df['Genre'].isin(selected_genres)]
# 创建一个交互式条形图来显示每种类型和年份中票房最高的电影
fig = px.bar(filtered_df, x='Year', y='Top Movie Gross (That Year)', color='Genre',title='Highest-Grossing Movies in Selected Genres Over Time',labels={'Top Movie Gross (That Year)': 'Gross Revenue'},text='Top Movie', height=500)
fig.update_traces(textposition='outside')
fig.show()
# 多年来的类型分布
# 多年来类型分布的堆叠区域图
fig = px.area(df, x='Year', y='Movies Released', color='Genre',title='Genre Distribution Over the Years',labels={'Movies Released': 'Number of Movies Released'},height=500)
fig.show()
# 受众参与分析
# 观众参与的散点图
fig = px.scatter(df, x='Tickets Sold', y='Gross', color='Genre',title='Audience Engagement by Genre',labels={'Tickets Sold': 'Number of Tickets Sold', 'Gross': 'Total Gross Revenue'},height=500)
fig.show()
# 历年最佳电影表现
# 随时间变化的顶级电影表现的折线图
fig = px.line(df, x='Year', y='Top Movie Gross (That Year)', color='Genre',title='Top Movie Performance Over Time',labels={'Top Movie Gross (That Year)': 'Gross Revenue'},height=500)
fig.show()
# 按类型划分的每部电影平均收入
# 按类型计算每部电影的平均收入
df['Average Revenue per Movie'] = df['Gross'] / df['Movies Released']
# 按类型划分的每部电影平均收入柱状图
fig = px.bar(df, x='Genre', y='Average Revenue per Movie',title='Average Revenue per Movie by Genre',labels={'Average Revenue per Movie': 'Average Revenue per Movie'},height=500)
fig.show()
# 不同类型的门票销售和发行
fig = px.violin(df, x='Genre', y='Tickets Sold',title='Genre-wise Ticket Sales Distribution',labels={'Tickets Sold': 'Number of Tickets Sold'},height=500)
fig.show()
# 通货膨胀调整后总收益的类型趋势
fig = px.line(df, x='Year', y='Inflation-Adjusted Gross', color='Genre',title='Genre Trends in Inflation-Adjusted Gross Revenue',labels={'Inflation-Adjusted Gross': 'Inflation-Adjusted Gross Revenue'},height=500)
fig.show()
# 每个类型和收入的顶级电影
unique_top_movies_count = df.groupby('Genre')['Top Movie'].nunique().sort_values(ascending=False)
top_movies_gross = df.groupby('Top Movie')['Top Movie Gross (That Year)'].max().sort_values(ascending=False).head(10)
fig = sp.make_subplots(rows=3, cols=1, subplot_titles=['Count of Unique Top Movies per Genre', 'Top Movies with the Highest Gross Revenue', 'Distribution of Gross Revenue for Top Movies'])
fig.add_trace(go.Bar(x=unique_top_movies_count.index, y=unique_top_movies_count.values),row=1, col=1)
fig.add_trace(go.Bar(x=top_movies_gross.index, y=top_movies_gross.values),row=2, col=1)
fig.add_trace(go.Box(x=df['Top Movie'], y=df['Top Movie Gross (That Year)']),row=3, col=1)
fig.update_layout(height=1000, showlegend=False, title_text="Top Movie Analysis")
fig.show()
from sklearn.model_selection import KFold, cross_val_predict
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.metrics import mean_squared_error
dff = df.copy()
categorical_features = ['Genre']  # 假设“类型”是一个分类变量
numerical_features = ['Year', 'Movies Released']
target_variable = 'Tickets Sold'# 筛选DataFrame以仅包含相关列
data = df[['Year', 'Movies Released', 'Genre', 'Tickets Sold', 'Gross']]# 将数据拆分为特征和目标变量
X = data[['Year', 'Movies Released', 'Genre', 'Gross']]
y = data[target_variable]
# 定义分类编码的预处理器
preprocessor = ColumnTransformer(transformers=[('cat', OneHotEncoder(), categorical_features),],remainder='passthrough'
)# 初始化随机森林回归模型
model = RandomForestRegressor(n_estimators=100, random_state=42)# 创建带有预处理和模型的管道
pipeline = Pipeline([('preprocessor', preprocessor),('model', model)
])
# 初始化KFold以进行交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)
# 进行k-fold交叉验证并进行预测
predictions = cross_val_predict(pipeline, X, y, cv=kf)
# 评估模型性能
mse = mean_squared_error(y, predictions)
print(f'Mean Squared Error: {mse}')
# 可视化实际值和预测值
plt.scatter(y, predictions)
plt.xlabel('Actual Tickets Sold')
plt.ylabel('Predicted Tickets Sold')
plt.title('Actual vs. Predicted Tickets Sold')
plt.show()

相关文章:

大数据分析案例-基于随机森林算法构建电影票房预测模型

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

关于Gitlab用户登录提示无限重定向循环ERR_TOO_MANY_REDIRECTS

#工作笔记# 查阅了网上所有相关的记录,都没有解决gitlab登录/users/sign_up/welcome提示ERR_TOO_MANY_REDIRECTS,好在最终解决了,记录在此。 先说下起因: github哼哼不想用了,原因太多,所以内部讨论用git…...

突破瓶颈,提升开发效率:Spring框架进阶与最佳实践-IOC

IOC相关内容 1.1 bean基础配置1.1.1 bean基础配置(id与class)1.1.2 bean的name属性步骤1:配置别名步骤2:根据名称容器中获取bean对象步骤3:运行程序 1.1.3 bean作用范围scope配置1.1.3.1 验证IOC容器中对象是否为单例验证思路具体实现 1.1.3.2 配置bean为非单例1.1.…...

西方网络安全人才培养的挑战及对策

文章目录 前言一、网络安全人才力量发展现状(一)注重从战略上重视网络安全人才培养和发展。(二)注重从多渠道多路径招募网络安全人才。(三)注重分层次分阶段系统规划网络安全人才培养模式。(四)注重通过实践锻炼进一步提升网络攻防实战能力。二、网络安全人才面临的形势…...

计算机网络之三次握手,四次挥手

TCP(传输控制协议)是一种面向连接的、可靠的传输层协议,用于在网络中的两个应用程序之间建立可靠的通信连接。TCP的核心特征之一是它使用“三次握手”过程来建立连接,以及“四次挥手”过程来终止连接。 三次握手(建立…...

深度强化学习(王树森)笔记09

深度强化学习(DRL) 本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL 源代码链接:https://github.c…...

调试OpenHarmony应用/服务

调试流程 DevEco Studio提供了丰富的OpenHarmony应用/服务调试能力,帮助开发者更方便、高效的调试应用/服务。 OpenHarmony应用/服务调试支持使用真机设备调试。使用真机设备进行调试前,需要对HAP进行签名后进行调试。详细的调试流程如下图所示&#x…...

【NGINX】NGINX如何阻止指定ip的请求

业务场景: web页面做了一个功能,在websocket请求失败的情况,会定时向服务端进行重试进行建立连接。 存在的问题是即使这个web系统没人操作的情况下,只要页面没有关闭,即使系统超时了页面也没有发生跳转,这…...

PHP抽奖设置中奖率,以及防高并发

一、中奖率,先在后台设定好奖项名称,抽奖份数,以及中奖百分比 奖品表draw 二、 借助文件排他锁,在处理下单请求的时候,用flock锁定一个文件,如果锁定失败说明有其他订单正在处理,此时要么等待要么直接提示用户"服务器繁忙" 阻塞(等待)模式,一般都是用这个模…...

使用.NET6 Avalonia开发跨平台三维应用

本文介绍在Vistual Studio 2022中使用Avalonia和集成AnyCAD Rapid AvaloniaUI三维控件的过程。 0 初始化环境 安装Avalonia.Templates dotnet new install Avalonia.Templates若之前安装过可忽略此步骤。 1 创建项目 选择创建AvaloniaUI项目 选一下.NET6版本和Avalonia版…...

linux(ubuntu)中crontab定时器命令详解 以及windows中定时器

文章目录 linux(ubuntu)中crontab定时器命令详解基本语法crontab 文件格式通配符示例在Ubuntu中,定时任务cron服务默认被安装。可以通过以下命令操作该服务:其他注意事项windows中定时器任务的创建步骤:常规触发器操作…...

植物病害检测YOLOV8,OPENCV调用

【免费】植物病害检测,10种类型,YOLOV8训练,转换成ONNX,OPENCV调用资源-CSDN文库 植物病害检测,YOLOV8NANO,训练得到PT模型,然后转换成ONNX,OPENCV的DNN调用,支持C,PYTH…...

C++初阶:入门泛型编程(函数模板和类模板)

大致介绍了一下C/C内存管理、new与delete后:C初阶:C/C内存管理、new与delete详解 我们接下来终于进入了模版的学习了,今天就先来入门泛型编程 文章目录 1.泛型编程2.函数模版2.1概念2.2格式2.3函数模版的原理2.4函数模版的实例化2.4.1隐式实例…...

【RT-DETR有效改进】CARAFE提高精度的上采样方法(助力细节长点)

👑欢迎大家订阅本专栏,一起学习RT-DETR👑 一、本文介绍 本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法(就是我们的Upsample)的性能。CARAFE的核心思想是:使用输…...

leetcode 27.移除元素(python版)

需求 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度…...

分布式场景怎么Join

背景 最近在阅读查询优化器的论文,发现System R中对于Join操作的定义一般分为了两种,即嵌套循环、排序-合并联接。 考虑到我的领域是在处理分库分表或者其他的分区模式,这让我开始不由得联想我们怎么在分布式场景应用这个Join逻辑&#xff…...

springboot2.7继承swagger knif4j

maven pom依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-openapi2-spring-boot-starter</artifactId><version>4.4.0</version></dependency> yml配置 knife4j:enable: trueopenapi:title: …...

C++ 实现单例模式

单例模式 单例模式确保一个类只有一个实例&#xff0c;并提供一个全局访问点。 创建单一实例 怎么让某个类只能创建一个实例&#xff1f; 思路&#xff1a;将类的构造函数私有&#xff0c;然后提供一个静态方法访问对象。调用类内成员函数需要对象&#xff0c;但我们又无法…...

Java多线程--线程安全问题练习题

文章目录 &#xff08;1&#xff09;练习题1&#xff08;2&#xff09;练习题2&#xff08;3&#xff09;练习题3 现在咱们线程一共说了这么几件事情&#xff0c;如下&#xff1a; 具体文章见专栏。 接下来看几个练习题吧。 &#xff08;1&#xff09;练习题1 &#x1f30b;题…...

PHY6252低成本Mesh组网蓝牙芯片

超低成本MESH组网蓝牙芯片PHY6252蓝牙Mesh组网简介 蓝⽛Mesh⽹络使⽤&#xff0c;依赖于低功耗蓝⽛(BLE)。低功耗蓝⽛技术是蓝⽛Mesh使用的无线通信协议栈&#xff0c;蓝牙BR/EDR能够与实现一台设备到另一台设备的连接和通信&#xff0c;建立“一对一”的关系&#xff0c;大多数…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...