《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
文章目录
- 第5章 决策树—python 实践
- 书上题目5.1
- 利用ID3算法生成决策树,例5.3
- scikit-learn实例
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树
第5章 决策树—python 实践
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inlinefrom sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint
书上题目5.1

def create_data():datasets = [['青年', '否', '否', '一般', '否'],['青年', '否', '否', '好', '否'],['青年', '是', '否', '好', '是'],['青年', '是', '是', '一般', '是'],['青年', '否', '否', '一般', '否'],['中年', '否', '否', '一般', '否'],['中年', '否', '否', '好', '否'],['中年', '是', '是', '好', '是'],['中年', '否', '是', '非常好', '是'],['中年', '否', '是', '非常好', '是'],['老年', '否', '是', '非常好', '是'],['老年', '否', '是', '好', '是'],['老年', '是', '否', '好', '是'],['老年', '是', '否', '非常好', '是'],['老年', '否', '否', '一般', '否'],]labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']# 返回数据集和每个维度的名称return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
# 熵
def calc_ent(datasets):data_length = len(datasets)label_count = {}for i in range(data_length):label = datasets[i][-1]if label not in label_count:label_count[label] = 0label_count[label] += 1ent = -sum([(p / data_length) * log(p / data_length, 2)for p in label_count.values()])return ent# 经验条件熵
def cond_ent(datasets, axis=0):data_length = len(datasets)feature_sets = {}for i in range(data_length):feature = datasets[i][axis]if feature not in feature_sets:feature_sets[feature] = []feature_sets[feature].append(datasets[i])cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])return cond_ent# 信息增益:熵-经验条件熵
def info_gain(ent, cond_ent):return ent - cond_entdef info_gain_train(datasets):count = len(datasets[0]) - 1ent = calc_ent(datasets)best_feature = []for c in range(count):c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))best_feature.append((c, c_info_gain))print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))# 比较大小best_ = max(best_feature, key=lambda x: x[-1])return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
===================================
特征(年龄) - info_gain - 0.083
特征(有工作) - info_gain - 0.324
特征(有自己的房子) - info_gain - 0.420
特征(信贷情况) - info_gain - 0.363
'特征(有自己的房子)的信息增益最大,选择为根节点特征'
利用ID3算法生成决策树,例5.3
# 定义节点类 二叉树
class Node:def __init__(self, root=True, label=None, feature_name=None, feature=None):self.root = rootself.label = labelself.feature_name = feature_nameself.feature = featureself.tree = {}self.result = {'label:': self.label,'feature': self.feature,'tree': self.tree}def __repr__(self):return '{}'.format(self.result)def add_node(self, val, node):self.tree[val] = nodedef predict(self, features):if self.root is True:return self.labelreturn self.tree[features[self.feature]].predict(features)class DTree:def __init__(self, epsilon=0.1):self.epsilon = epsilonself._tree = {}# 熵@staticmethoddef calc_ent(datasets):data_length = len(datasets)label_count = {}for i in range(data_length):label = datasets[i][-1]if label not in label_count:label_count[label] = 0label_count[label] += 1ent = -sum([(p / data_length) * log(p / data_length, 2)for p in label_count.values()])return ent# 经验条件熵def cond_ent(self, datasets, axis=0):data_length = len(datasets)feature_sets = {}for i in range(data_length):feature = datasets[i][axis]if feature not in feature_sets:feature_sets[feature] = []feature_sets[feature].append(datasets[i])cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)for p in feature_sets.values()])return cond_ent# 信息增益@staticmethoddef info_gain(ent, cond_ent):return ent - cond_entdef info_gain_train(self, datasets):count = len(datasets[0]) - 1ent = self.calc_ent(datasets)best_feature = []for c in range(count):c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))best_feature.append((c, c_info_gain))# 比较大小best_ = max(best_feature, key=lambda x: x[-1])return best_def train(self, train_data):"""input:数据集D(DataFrame格式),特征集A,阈值etaoutput:决策树T"""_, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:,-1], train_data.columns[:-1]# 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回Tif len(y_train.value_counts()) == 1:return Node(root=True, label=y_train.iloc[0])# 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回Tif len(features) == 0:return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0])# 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征max_feature, max_info_gain = self.info_gain_train(np.array(train_data))max_feature_name = features[max_feature]# 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回Tif max_info_gain < self.epsilon:return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0])# 5,构建Ag子集node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)feature_list = train_data[max_feature_name].value_counts().indexfor f in feature_list:sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)# 6, 递归生成树sub_tree = self.train(sub_train_df)node_tree.add_node(f, sub_tree)# pprint.pprint(node_tree.tree)return node_treedef fit(self, train_data):self._tree = self.train(train_data)return self._treedef predict(self, X_test):return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree
=============================
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])
================================
'否'
scikit-learn实例
# data
def create_data():iris = load_iris()df = pd.DataFrame(iris.data, columns=iris.feature_names)df['label'] = iris.targetdf.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']data = np.array(df.iloc[:100, [0, 1, -1]])# print(data)return data[:, :2], data[:, -1]X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)
===================================
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,max_features=None, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, presort=False, random_state=None,splitter='best')
clf.score(X_test, y_test)
==============================
0.9666666666666667
tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:dot_graph = f.read()==============================
graphviz.Source(dot_graph)
<graphviz.files.Source at 0x1f159bc2780>
相关文章:
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
文章目录 第5章 决策树—python 实践书上题目5.1利用ID3算法生成决策树,例5.3scikit-learn实例 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树 第5章 决策树—python 实践 import numpy as np import pand…...
电脑可以设置代理IP吗
首先需要回答的是,电脑可以设置代理IP,下面我们详细说说如何设置。 首先,我们使用工具来完成,使用工具的好处就是可以设置单独的软件使用代理,也可以设置全局,比较方便 我们解压这个文件出来,打…...
Zookeeper服务注册与发现实战
目录 设计思路 Zookeeper注册中心的优缺点 SpringCloudZookeeper实现微服务注册中心 第一步:在父pom文件中指定Spring Cloud版本 第二步:微服务pom文件中引入Spring Cloud Zookeeper注册中心依赖 第三步: 微服务配置文件application.y…...
【LeetCode】每日一题 2024_1_30 使循环数组所有元素相等的最少秒数(哈希、贪心、扩散)
文章目录 LeetCode?启动!!!题目:使循环数组所有元素相等的最少秒数题目描述代码与解题思路 LeetCode?启动!!! 今天的题目类型差不多是第一次见到,原来题目描述…...
uni-app vite+ts+vue3模式 集成微信云开发
1.创建uni-app项目 此处使用的是通过vue-cli命令行方式uni-app官网 使用vue3/vite版 创建以 typescript 开发的工程(如命令行创建失败,请直接访问 gitee 下载模板) npx degit dcloudio/uni-preset-vue#vite-ts my-vue3-project(我创建失败…...
一个程序入库出现死锁问题的排查
某虚拟化部署的服务群,发现其中一个程序在写数据库时,经常有死锁现象,一旦出现,持续时间长达数分钟。当时没时间排查,一直到年底才解决。后面又忙,直到月底才有点时间总结。抛开起初没找到问题的时间外&…...
记录解决报错--These dependencies were not found jsencrypt lodash-es
1.场景 idea打包vue,报错退出,缺少依赖 These dependencies were not found jsencrypt lodash-es2.解决步骤 ①到相关目录下直接安装依赖,npm install --save jsencrypt lodash-es。我这里是没安装成功,原因是很多依赖冲突。…...
【极数系列】Flink集成DataSource读取集合数据(07)
文章目录 01 引言02 简介概述03 基于集合读取数据3.1 集合创建数据流3.2 迭代器创建数据流3.3 给定对象创建数据流3.4 迭代并行器创建数据流3.5 基于时间间隔创建数据流3.6 自定义数据流 04 源码实战demo4.1 pom.xml依赖4.2 创建集合数据流作业4.3 运行结果日志 01 引言 源码地…...
React hooks子组件暴露方法示例
说明 通常情况下,React 子组件使用父组件的方法或值通过props传递,反过来,父组件如果需要子组件的方法就需要子组件将自己的方法暴露出去。以下是一个实例: User.tsx import React, { FC, useEffect, useState, useRef } from …...
数据结构:大顶堆、小顶堆
堆是其中一种非常重要且实用的数据结构。堆可以用于实现优先队列,进行堆排序,以及解决各种与查找和排序相关的问题。本文将深入探讨两种常见的堆结构:大顶堆和小顶堆,并通过 C 语言展示如何实现和使用它们。 一、定义 堆是一种完…...
电加热热水器上架亚马逊美国站需要的UL174报告
电加热热水器上架亚马逊美国站需要的UL174报告 家用热水器出口美国需要办理UL174测试报告。 热水器就是指通过各种物理原理,在一定时间内使冷水温度升高变成热水的一种装置。分为制造冷气部分和制造热水部分。其实这两个部分又是紧密地联系在一起,密不可…...
使用visual studio写一个简单的c语言程序
官网下载visual studio,社区版免费的 https://visualstudio.microsoft.com/zh-hans/ 下载好以后选择自己的需求进行安装,我选择了两个,剩下的是默认。 创建文件:...
怎么创建facebook广告
创建Facebook广告的文章应由本人根据自身实际情况书写,以下仅供参考,请您根据自身实际情况撰写。 创建Facebook广告的步骤: 确定目标受众和广告主题:首先需要明确你的目标受众是谁,他们有什么特点,以及你想…...
pdf怎么转成高清图?pdf在线转换器推荐分享
在日常的工作或者学习中,有时候会需要将编辑好的pdf转高清图片,这样更方便我们后续使用,那么怎么将pdf转图片(https://www.yasuotu.com/pdftopic)还能保持清晰呢?下面介绍一款pdf转换工具,支持p…...
postgresql 查询缓慢原因分析
pg_stat_activity 最近发现系统运行缓慢,查询数据老是超时,于是排查下pg_stat_activity 系统表,看看有没有耗时的查询sql SELECT pid, state, query, query_start, backend_type FROM pg_stat_activity WHERE state active AND query LIK…...
N65总账凭证管理凭证查询(sql)
--核算账簿 select code , name , pk_setofbook from org_setofbook where ( pk_setofbook in ( select pk_setofbook from org_accountingbook where 1 1 and ( pk_group N0001A11000000000037X ) and ( accountenablestate 2 ) ) ) order by code;--核算账簿 select code …...
投资1300万欧元!芬兰正式启动量子旗舰项目
内容来源:量子前哨(ID:Qforepost) 编辑丨慕一 编译/排版丨卉可 琳梦 深度好文:800字丨8分钟阅读 近日,芬兰研究委员会向新启动的芬兰量子旗舰(FQF)项目拨款1300万欧元…...
【3分钟开服】幻兽帕鲁服务器一键部署保姆教程
在帕鲁的世界,你可以选择与神奇的生物「帕鲁」一同享受悠闲的生活,也可以投身于与偷猎者进行生死搏斗的冒险。帕鲁可以进行战斗、繁殖、协助你做农活,也可以为你在工厂工作。你也可以将它们进行售卖,或肢解后食用。 引用自&#x…...
PandaWallet :Web3.0世界的入口
如果说互联网的普及和发展造就了移动支付,那么Web3的到来则书写了加密支付的新篇章,并将加密钱包的发展推向新高潮。 传统电子钱包的功能是储存资产与移动支付。加密钱包在储存资产与移动支付的基础上,增加了身份标识的功能。这也是Web3中用户…...
微软Azure-openAI 测试调用及说明
本文是公司在调研如何集成Azure-openAI时,调试测试用例得出的原文,原文主要基于官方说明文档简要整理实现 本文已假定阅读者申请部署了模型,已获取到所需的密钥和终结点 变量名称值ENDPOINT从 Azure 门户检查资源时,可在“密钥和…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
