【Python】一个简单的小案例:实现将两张图片合并为一张
使用时保证已经安装了opencv-python
import cv2bg = "BG.jpg" # 背景图名称
fg = "FG.jpg" # 前景图名称
output_filename = "new.jpg" # 合成后图片名称img_bg = cv2.imread(bg) # 读取背景图
img_fg = cv2.imread(fg) # 读取前景图# 读取背景图和前景图的像素和通道数
rows_bg, cols_bg, channels_bg = img_bg.shape
rows_fg, cols_fg, channels_fg = img_fg.shape
change_points = (cols_bg, rows_bg)# 修改前景图大小为背景图大小
img_fg = cv2.resize(img_fg, change_points, interpolation=cv2.INTER_LINEAR)roi = img_bg[0:rows_bg, 0:cols_bg] # 划定ROI区域
img_fg2gray = cv2.cvtColor(img_fg, cv2.COLOR_BGR2GRAY) # 前景图转为灰度图
ret, mask = cv2.threshold(img_fg2gray, 175, 255, cv2.THRESH_BINARY) # 设定阈值和掩膜
mask_inv = cv2.bitwise_not(mask) # 掩膜取反img_bg_bg = cv2.bitwise_and(roi, roi, mask=mask) # 获背景图扣去空白
img_fg_fg = cv2.bitwise_and(img_fg, img_fg, mask=mask_inv) # 前景图扣去空白dst = cv2.add(img_bg_bg, img_fg_fg) # 合成图像cv2.imwrite(output_filename, dst) # 保存图像
代码功能:
-
导入OpenCV库:
import cv2 -
定义背景图(bg)、前景图(fg)和输出图片的文件名(output_filename)。
-
使用OpenCV的
cv2.imread函数读取背景图和前景图。 -
获取背景图和前景图的尺寸和通道数,保存在
rows_bg, cols_bg, channels_bg和rows_fg, cols_fg, channels_fg中。 -
将前景图的大小调整为背景图的大小,使用
cv2.resize函数。 -
划定ROI(Region of Interest)区域,即在背景图上选择合成的区域。
-
将前景图转为灰度图,使用
cv2.cvtColor函数。 -
设定阈值和创建掩膜,使用
cv2.threshold函数。 -
对掩膜取反,得到反向掩膜。
-
使用
cv2.bitwise_and函数将背景图和前景图按照掩膜进行与运算,分别得到背景图中保留前景部分和前景图中保留背景部分的图像。 -
使用
cv2.add函数将上述两个部分叠加,得到最终合成的图像。 -
使用
cv2.imwrite函数将合成后的图像保存到指定文件名的文件中。
相关文章:
【Python】一个简单的小案例:实现将两张图片合并为一张
使用时保证已经安装了opencv-python import cv2bg "BG.jpg" # 背景图名称 fg "FG.jpg" # 前景图名称 output_filename "new.jpg" # 合成后图片名称img_bg cv2.imread(bg) # 读取背景图 img_fg cv2.imread(fg) # 读取前景图# 读取背景…...
不同的强化学习模型适配与金融二级市场的功能性建议
DQN ES DDPG A2C TD3 SAC QMIX MADDPG PPO CQL IMPALA 哪个模型适合进行股票操作 在考虑使用哪种模型进行股票操作时,需要考虑模型的特点、适用场景以及实现复杂度等因素。以下是对您列出的几种强化学习模型的简要概述,以帮助您做出选择: DQ…...
【音视频原理】音频编解码原理 ③ ( 音频 比特率 / 码率 | 音频 帧 / 帧长 | 音频 帧 采样排列方式 - 交错模式 和 非交错模式 )
文章目录 一、音频 比特率 / 码率1、音频 比特率2、音频 比特率 案例3、音频 码率4、音频 码率相关因素5、常见的 音频 码率6、视频码率 - 仅做参考 二、音频 帧 / 帧长1、音频帧2、音频 帧长度 三、音频 帧 采样排列方式 - 交错模式 和 非交错模式1、交错模式2、非交错模式 一…...
spring常用语法
etl表达式解析 if (rawValue ! null && rawValue.startsWith("#{") && entryValue.endsWith("}")) { // assume its spel StandardEvaluationContext context new StandardEvaluationContext(); context.setBeanResolver(new Be…...
【计算机毕业设计】128电脑配件销售系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
换个思维方式快速上手UML和 plantUML——类图
和大多数朋友一样,Jeffrey 在一开始的时候也十分的厌烦软件工程的一系列东西,对工程化工具十分厌恶,觉得它繁琐,需要记忆很多没有意思的东西。 但是之所以,肯定有是因为。对工程化工具的不理解和不认可主要是基于两个逻…...
策略模式+SpringBoot接口,一个接口实现接收的数据自动分流处理
策略模式 定义了算法族,分别封装起来,让它们之间可以互相替换,此模式让算法的变化,不会影响到使用算法的客户。策略模式的精髓就在于将经常变化的一点提取出来,单独变成一类,并且各个类别可以相互替换和组合。 1、策略接口 CalculationStrategy //算数 public interface…...
P1228 地毯填补问题(葬送的芙蓉王【bushi】)
地毯填补问题 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿。宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站立的地方外的所有地…...
352. 闇の連鎖(树上差分,LCA)
352. 闇の連鎖 - AcWing题库 传说中的暗之连锁被人们称为 Dark。 Dark 是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它。 经过研究,你发现 Dark 呈现无向图的结构,图中有 N 个节点和两类边,一类边被称为主要边ÿ…...
dcat admin + dingo + nginx 开发前台
前言 Dcat Admin 是一个功能强大的后端框架,主要用于开发管理后台。然而,大多数网站不仅需要一个管理后台,还需要一个用户界面,即“前台”,以及它们自己的用户系统。 为了实现这一目标,我们需要对 Dcat A…...
安卓线性布局LinearLayout
<?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"android:layout_width"match_parent"android:…...
Advanced CNN
文章目录 回顾Google NetInception1*1卷积Inception模块的实现网络构建完整代码 ResNet残差模块 Resedual Block残差网络的简单应用残差实现的代码 练习 回顾 这是一个简单的线性的卷积神经网络 然而有很多更为复杂的卷积神经网络。 Google Net Google Net 也叫Inception V…...
判断当前设备是不是安卓或者IOS?
代码(重要点): 当前文件要是 xxx.js文件,就需要写好代码后调用才会执行: // 判断是不是安卓 const isAndroid () > {return /android/.test(navigator.userAgent.toLowerCase()); }// 判断是不是ios const isIOS () > {return /iphone|ipad|ipod/.test(navigator.use…...
使用C++操作Matlab中的mat文件
matlab提供读写MAT文件的头文件和库函数,下面列出这些文件的路径,其中matlabroot指matlab安装的路径,arch来识别平台架构 头文件在matlabroot\extern\include库函数在matlabroot\bin\win64例程在matlabroot\extern\examples\eng_mat头文件 …...
【OCPP】ocpp1.6协议第3.5章节:本地授权和离线行为-介绍及翻译
目录 3.5章节 概述 3.5 本地鉴权和离线行为-译文(Local Authorization & Offline Behavior) 3.5.1 鉴权缓存-译文(3.5.1. Authorization Cache) 3.5.2 本地鉴权列表-译文(Local Authorization List) 3.5.3 授权缓存和本地授权列表之间的关系-译文(Relation between A…...
OpenGL查询对象 Query Objects
查询对象和异步查询(Query Objects and Asynchronous Queries) Query Objects(查询对象)是OpenGL中的一种机制,用于获取有关一系列GL命令处理过程的信息。这些信息可以包括: 绘图命令处理的图元数量。写入变换反馈缓冲区的图元数…...
【数据分享】1929-2023年全球站点的逐日最高气温数据(Shp\Excel\免费获取)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据! 之前我们分享过1929-2023年全球气象站…...
Docker深入解析:从基础到实践
Docker基础知识 Docker是什么:定义和核心概念解释 Docker是一个开源项目,它诞生于2013年,旨在自动化应用程序的部署过程, 让应用程序能够在轻量级的、可移植的、自给自足的容器中运行。这些容器可以在几乎任何机器上运行…...
【鸿蒙】大模型对话应用(一):大模型接口对接与调试
Demo介绍 本demo对接阿里云和百度的大模型API,实现一个简单的对话应用。 DecEco Studio版本:DevEco Studio 3.1.1 Release HarmonyOS API版本:API9 关键点:ArkTS、ArkUI、UIAbility、网络http请求、列表布局 官方接口文档 此…...
SQL的函数类型
目录 一、聚合函数 二、数值型函数 三、字符串函数 四、日期函数 五、流程控制函数 一、聚合函数 定义:聚合函数是指对一组值进行运算,最终返回是单个值,也可以被称为组合函数。 COUNT() 统计目标行数量的函数 AVG() 求平均值 SU…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
