锦上添花!特征选择+深度学习:mRMR-CNN-BiGRU-Attention故障识别模型!特征按重要性排序!最大相关最小冗余!
适用平台:Matlab2023版及以上
特征选择方法:"最大相关最小冗余"(Maximal Relevance and Minimal Redundancy,简称MRMR)是一种用于特征选择的方法。该方法旨在找到最相关的特征集,同时最小化特征之间的冗余,以提高模型的性能和泛化能力。我们将该特征选择方法应用于CNN-BiGRU-Attention故障识别模型上,构建的mRMR-CNN-BiGRU-Attention故障识别模型目前还没人写哦。
在具体的数学表达上,最大相关最小冗余方法通常通过优化某个相关性度量和冗余度量的组合来实现。最常用的相关性度量是皮尔逊相关系数,而冗余度量通常使用互信息或方差。通过调整特征子集中每个特征的权重,可以实现最大化相关性和最小化冗余。
这个方法的优势在于它不仅关注特征与目标变量的关系,还考虑了特征之间的相互关系,以避免选择高度相关的特征,从而减少模型的过拟合风险,增强模型的可解释性。
用mRMR选择5个最重要的特征作为RMR-CNN-BiGRU-Attention故障识别模型的输入:
创新点:
-
特征选择优化: mRMR特征选择的方法,通过最大化特征与目标变量的相关性,同时最小化特征之间的冗余,给特征变量的选择提供有效依据,提高模型的可解释性。
-
时序-空间特征结合:CNN通过卷积层可以有效地捕捉输入故障波形中的局部特征,如脉冲、振动或其它突变。而GRU则能够学习序列中的长期依赖关系,捕捉全局特征,提高了对故障波形中复杂特征的提取能力。
-
故障前后特征:BiGRU双向记忆单元对时间序列进行特征提取,捕捉时间上相邻的特征,同时考虑故障前后所包含的特征。
-
多头自注意力机制:自注意力层被嵌入到BiGRU层后,自注意力层用于捕捉故障波形中的全局依赖关系,自注意力机制允许网络在学习时动态地调整各个采样点的权重,以便更好地捕捉长期依赖和全局模式,实现各特征的重点强化。
程序数据集格式:
数据格式:一行为一个故障样本也可以看成一个故障波形,最后一列表示该样本所属的故障类别,即故障类别标签。
程序结果:
模型结构和测试集的混淆矩阵:
精确率是混淆矩阵的最下面一行,召回率是混淆矩阵的最右边一列
-
精确率:指模型在预测为正类别的样本中,实际为正类别的样本所占的比例。它衡量的是模型在正类别的预测中的准确性。
-
召回率:指实际为正类别的样本中,模型成功预测为正类别的样本所占的比例。它衡量的是模型对正类别样本的覆盖能力。
训练集和测试集的散点图:
程序展示准确率、精确率、召回率、F1分数等计算结果:
训练的精确度及损失曲线:
部分代码:
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度 公众号:创新优化及预测代码
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%% 划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本mid_size = size(mid_res, 1); % 得到不同类别样本个数mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';
t_test = categorical(T_test )';%% 数据平铺 公众号:创新优化及预测代码
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(P_train, num_dim, 1, 1, M));
p_test = double(reshape(P_test , num_dim, 1, 1, N));%% 构造CNN-BiGRU-Attention网络
lgraph = layerGraph();% 添加层分支 公众号:创新优化及预测代码
% 将网络分支添加到层次图中。每个分支均为一个线性层组。
tempLayers = [imageInputLayer([numComponents 1 1],"Name","imageinput")convolution2dLayer([2 1],16,"Name","conv_1")batchNormalizationLayer("Name","batchnorm_1")reluLayer("Name","relu_1")maxPooling2dLayer([2 1],"Name","maxpool_1")flattenLayer("Name","flatten")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(128,"Name","gru");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(128,"Name","gru_1")];
lgraph = addLayers(lgraph,tempLayers);
相关文章:

锦上添花!特征选择+深度学习:mRMR-CNN-BiGRU-Attention故障识别模型!特征按重要性排序!最大相关最小冗余!
适用平台:Matlab2023版及以上 特征选择方法:"最大相关最小冗余"(Maximal Relevance and Minimal Redundancy,简称MRMR)是一种用于特征选择的方法。该方法旨在找到最相关的特征集,同时最小化特征…...

C++ QT入门2——记事本功能实现与优化(事件处理+基本控件)
C QT入门2——记事本功能优化(事件处理基本控件) 一、记事本功能优化编码乱码问题QComboBox下拉控件QString、string、char * 间的数据转化编码问题解决整合 光标行列值显示记事本打开窗口标题关闭按钮优化—弹窗提示快捷键设计 二、☆ QT事件处理事件处…...

《Lua程序设计》-- 学习10
环境(Environment) 具有动态名称的全局变量 全局变量的声明 由于Lua语言将全局变量存放在一个普通的表中,所以可以通过元表来发现访问不存在全局变量的情况。 正如前面所提到的,我们不允许值为nil的全局变量,因为值为…...

Linux内核编译-ARM
步骤一、下载源码及交叉编译器后解压 linux kernel官网 ARM GCC交叉编译器 步骤二、安装软件 sudo apt-get install ncurses-dev sudo apt-get install flex sudo apt-get install bison sudo apt install libgtk2.0-dev libglib2.0-dev libglade2-dev sudo apt install libs…...

开源编辑器:ONLYOFFICE文档又更新了!
办公软件 ONLYOFFICE文档最新版本 8.0 现已发布:PDF 表单、RTL、单变量求解、图表向导、插件界面设计等更新。 什么是 ONLYOFFICE 文档 ONLYOFFICE 文档是一套功能强大的文档编辑器,支持编辑处理文本文档、电子表格、演示文稿、可填写的表单、PDF&#…...
第3章 文件类型和目录结构
第3章 文件类型和目录结构 在这这章之前我们先学习一个前面使用过的命令 ls 查看文件ls 命令格式: [rootbogon redhat]# ls --helpUsage: ls [OPTION]... [FILE]...List information about the FILEs (the current directory by default).Sort entries alphabeti…...

前端构建变更:从 webpack 换 vite
现状 这里以一个 op (内部运营管理用)项目为例,从 webpack 构建改为 vite 构建,提高本地开发效率,顺便也加深对 webpack 、 vite 的了解。 vite 是前端构建工具,使用 一系列预配置进行rollup 打包&#x…...

记录基于Vue.js的移动端Tree树形组件
目录 一、Liquor Tree 入门 : Development Component Options 组件选项 Structure 结构 二、vue-treeselect Introduction 介绍 Getting Started 入门 Vue 树形选择器( Vue tree select )组件在搭建 Vue 的 app 中特别常用,Vue tree select 除了简单的树形结构…...
Vue中嵌入原生HTML页面的方法
在Vue中嵌入原生HTML页面通常可以通过组件或页面的方式来完成。下面将详细说明如何通过组件方式实现这个功能,并提供一个简单的代码示例。 方法说明 创建原生HTML页面:首先,你需要创建一个原生HTML页面,这个页面可以是一个独立的…...
17 # 类型检查机制:类型保护
例子: enum Type {Strong,Week }class Java {helloJava(){console.log(hello Java);} }class JavaScript {helloJavaScript(){console.log(hello JavaScript);} }function getLanguage(type: Type){let lang type Type.Strong ? new Java() : new JavaScript();…...

Vulnhub-RIPPER: 1渗透
文章目录 一、前言1、靶机ip配置2、渗透目标3、渗透概括 开始实战一、信息获取二、rips的使用三、获取密码文件四、日志审查五、提权 一、前言 由于在做靶机的时候,涉及到的渗透思路是非常的广泛,所以在写文章的时候都是挑重点来写,尽量的不饶…...

幻兽帕鲁自建服务器:可以使用香港服务器吗?
随着网络技术的发展,越来越多的游戏爱好者选择通过自建服务器来享受游戏的乐趣。幻兽帕鲁作为一款备受喜爱的游戏,也有不少玩家想要自建服务器进行游戏。而在选择服务器地点时,很多玩家会想到使用香港服务器。那么,是否可以使用香…...

Revisiting image pyramid structure for high resolution salient object detection
accv2022的技术,在我测评的数据集上确实要明显好于basnet,rembg等一众方法。 1.Introduction 使用LR数据集训练的方法通过调整输入尺寸可以在HR图像上产生不错的结果。本文主要关注仅使用LR数据集进行训练以产生高质量的HR预测。HR的有效感受野ERFs和LR…...
中移(苏州)软件技术有限公司面试问题与解答(7)—— kmalloc与vmalloc的区别与联系及使用场景
接前一篇文章:中移(苏州)软件技术有限公司面试问题与解答(0)—— 面试感悟与问题记录 本文参考以下文章: kmalloc与vmalloc如何选择 Vmalloc与kmalloc的区别 特此致谢! 本文对于中移…...

微服务-微服务Alibaba-Nacos 源码分析 (源码流程图)
客户端流程 客户端心跳与实例往服务端注册...

后端性能优化的一些总结
目录 1、背景 2、优化实现 2.1查询数据表速度慢 2.2调别人接口速度慢 2.3导入速度慢、 2.4导出速度慢的做出介绍 2.5统计功能速度慢 3、总结 1、背景 系统上线后,被用户反应系统很多功能响应时长很慢。用户页面影响速度有要求,下面针对查询数据表…...

【升级openssl1.1.1t报错libssl.so.1.1: cannot open shared object file】
升级openssl报错: openssl vesion openssl: error while loading shared libraries: libssl.so.1.1: cannot open shared object file: No such file or directory 编译安装openssl1.1.1t当执行openssl version的时候,报上述错误,将编译到的…...

CVE-2024-0352 likeshop v2.5.7文件上传漏洞分析
本次的漏洞研究基于thinkPHP开发开的一款项目..... 漏洞描述 Likeshop是Likeshop开源的一个社交商务策略的完整解决方案,开源免费版基于thinkPHP开发。Likeshop 2.5.7.20210311及之前版本存在代码问题漏洞,该漏洞源于文件server/application/api/contr…...

JAVA处理类似饼状图占比和100%问题,采用最大余额法
前言: 在做数据统计报表的时候,有两种方式解决占比总和达不到100%或者超过100%问题。 第一种方式是前端echart图自带的算分框架。 第二种方式是java后端取处理这个问题。 现存问题: 前端不通过饼状图的方式去展示各个分类的占比累加和为100%问…...
MATLAB矩阵的操作(第一部分)
矩阵的基本知识 矩阵概念 矩阵(Matrix)在数学中是一个由复数或实数组成的矩形阵列,其元素按照行和列排列。矩阵的定义可以形式化地描述为: 一个 m 行 n 列的矩阵是一个有序的数表,其中包含 m*n 个数,可以…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...

python可视化:俄乌战争时间线关键节点与深层原因
俄乌战争时间线可视化分析:关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一,自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具,系统分析这场战争的时间线、关键节点及其背后的深层原因,全面…...

多模态大语言模型arxiv论文略读(112)
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文标题:Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文作者:Jea…...