当前位置: 首页 > news >正文

pytorch nearest upsample整数型tensor

在用 torch.nn.Upsample 给分割 label 上采样时报错:RuntimeError: "upsample_nearest2d_out_frame" not implemented for 'Long'

参考 [1-3],用 [3] 给出的实现。稍微扩展一下,支持 h、w 用不同的 scale factor,并测试其与 PyTorch 的几个 upsample 类的异同,验证 [3] 的实现用 nearest 插值。

Code

  • linear 要 3D 输入、trilinear 要 5D 输入,故此两种插值法没比。
import torch
import torch.nn as nnclass UpsampleDeterministic(nn.Module):"""deterministic upsample with `nearest` interpolation"""def __init__(self, scale_factor=2):"""Input:scale_factor: int or (int, int), ratio to scale (along heigth & width)"""super(UpsampleDeterministic, self).__init__()if isinstance(scale_factor, (tuple, list)):assert len(scale_factor) == 2self.scale_h, self.scale_w = scale_factorelse:self.scale_h = self.scale_w = scale_factorassert isinstance(self.scale_h, int) and isinstance(self.scale_w, int)def forward(self, x):"""Input:x: [n, c, h, w], torch.TensorOutput:upsampled x': [n, c, h * scale_h, w * scale_w]"""return x[:, :, :, None, :, None].expand(-1, -1, -1, self.scale_h, -1, self.scale_w).reshape(x.size(0), x.size(1), x.size(2) * self.scale_h, x.size(3) * self.scale_w)# 随机数据
x = torch.rand(2, 3, 4, 4) # [n, c, h, w]
# [3] 的实现
us_det = UpsampleDeterministic((2, 3))
# pytorch 自带的几种实现
us_list = {mode: nn.Upsample(scale_factor=(2, 3), mode=mode)for mode in ('nearest', 'bilinear', 'bicubic')}
# linear: 3D
# trilinear: 5Dy_det = us_det(x)
print(y_det.size())
for us_name, us in us_list.items():y = us(x)print(us_name, y.size(), (y_det != y).sum())

输出:

torch.Size([2, 3, 8, 12])
nearest torch.Size([2, 3, 8, 12]) tensor(0)
bilinear torch.Size([2, 3, 8, 12]) tensor(507)
bicubic torch.Size([2, 3, 8, 12]) tensor(576)

可见 [3] 的实现与 nearest 结果一致。

References

  1. 请慎用torch.nn.Upsample
  2. PyTorch中模型的可复现性
  3. Non Deterministic Behaviour even after cudnn.deterministic = True and cudnn.benchmark=False #12207

相关文章:

pytorch nearest upsample整数型tensor

在用 torch.nn.Upsample 给分割 label 上采样时报错:RuntimeError: "upsample_nearest2d_out_frame" not implemented for Long。 参考 [1-3],用 [3] 给出的实现。稍微扩展一下,支持 h、w 用不同的 scale factor,并测试…...

MySQL的SQL MODE

目录 举例: --常见SQL mode --mysql8 sql_mode 官方文档 https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html --查看全局的SQL MODE select global.sql_mode; --查看当前会话的SQL MODE select session.sql_mode; --运行时修改全局的SQL mode set gl…...

GO EASY 框架 之 NET 05

目录 1、Overview 2、Agent接口源码 3、收发消息 4、AgentHandle接收函数 5、conns.Conn接口 1、Overview 名称:agent.Agent 网络链接 接口; DESC:网络链接,服务端与客户端通信媒介; 封装:进一步封…...

【教程】谈一谈 IPA 上传到 App Store Connect 的几种方法

【教程】谈一谈 IPA 上传到 App Store Connect 的几种方法 引言 在应用开发过程中,将应用程序上传到 App Store Connect 是一个关键的环节。本文将探讨几种常见的 IPA 文件上传方法,包括 Xcode、Application Loader、altool、Appuploader以及Transport…...

面试经典 150 题 -- 滑动窗口 (总结)

面试经典150题链接 面试经典 150 题 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台 209 . 长度最小的子数组 思路 : 滑动窗口的思想,取ij0,向后遍历j,记录前缀和[l,r]为s,如果s>target,那么左端点向右移动,直到s…...

JDK8对List对象根据属性排序

文章目录 JDK8对List对象根据属性排序1. 被排序字段为null或者空时候报错2. 使用Stream流排序2.1 根据name升序2.2 根据name升序,score降序 3. 使用Collections排序3.1 根据name升序3.2 根据name升序,score降序 4. 完整的demo JDK8对List对象根据属性排序…...

【2024美国大学生数学建模竞赛】2024美赛C题网球运动中的势头,网球教练4.0没人比我更懂这个题了!!!

【2023美国大学生数学建模竞赛】2024美赛C题 问题分析、数学模型、实现代码、完整论文 引言 本人是计算机博士,拥有10年网球球龄,2023年的温网决赛,熬夜到半夜全称观看完了直播,对于网球规则、比赛的数据非常熟悉,这个…...

python的Flask生产环境部署说明照做成功

最近刚好在我的Linux服务器上部署一个Web服务, 使用了python的Flask框架, 因此本文主要介绍flask在linux环境上的部署。 Flask 是一个轻量级的 Python Web 框架,非常适合快速开发小型到中型的 Web 应用。然而,Flask 自带的服务器通常是用于开发目的&…...

EXCEL VBA调用百度api识别身份证

EXCEL VBA调用百度api识别身份证 Sub BC_识别身份证()Dim SHD, SHX As WorksheetDim AppKey, SecretKey, Token, PathY As StringDim jSon, JSonA, WithHttp As ObjectDim Pic, oDom, oW, jsCode, paramsDim ARX, BRX, DRX, ERX, ZADDim StrText, StrUrl As StringDim StrA, S…...

【每日一题】7.LeetCode——合并两个有序链表

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》|《数据结构与算法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢…...

【零基础学习CAPL】——CAN报文的发送(按下按钮同时周期性发送)

🙋‍♂️【零基础学习CAPL】系列💁‍♂️点击跳转 文章目录 1.概述2.面板创建3.系统变量创建4.CAPL实现4.1.函数展示4.2.全量报文展示5.效果1.概述 本章主要介绍使用CAPL和Panel在按下按钮时发送周期性CAN报文。 本章主要在“【零基础学习CAPL】——CAN报文的发送(配合P…...

六、Nacos源码系列:Nacos健康检查

目录 一、简介 二、健康检查流程 2.1、健康检查 2.2、客户端释放连接事件 2.3、客户端断开连接事件 2.4、小结 2.5、总结图 三、服务剔除 一、简介 Nacos作为注册中心不止提供了服务注册和服务发现的功能,还提供了服务可用性检测的功能,在Nacos…...

2024美赛C题思路/代码:网球中的动量

美赛直播b站,提前关注:川川菜鸟 美赛辅导预定:美赛服务 去年美赛C题:2023美赛C题 题目翻译 背景 在2023年温布尔登男子单打决赛中,20岁的西班牙新星阿尔卡拉兹击败了36岁的诺瓦克德约科维奇。这是德约科维奇自201…...

ConcurrentHashMap原理详解(太细了)

一、什么是ConcurrentHashMap ConcurrentHashMap和HashMap一样,是一个存放键值对的容器。使用hash算法来获取值的地址,因此时间复杂度是O(1)。查询非常快。 同时,ConcurrentHashMap是线程安全的HashMap。专门用于多线程环境。 二、Concurre…...

EasyExcel根据对应的实体类模板完成多个sheet的写入与读取

1.展示模板一的实体类 import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.write.style.ColumnWidth; import com.alibaba.excel.annotation.write.style.ContentRowHeight; import com.alibaba.excel.annotation.write.style.HeadRowH…...

在企业数字化转型过程中,IT运维发挥着怎样的价值?

IT运维软件在企业数字化转型中发挥着重要的价值。从效率、稳定性、安全性和资源利用率以及数据分析决策支持都有巨大的提升。 提高效率 利用自动化巡检功能,实时或定时进行系统巡检,减少人力巡检的繁琐和低效,避免手动操作的失误&#xff0c…...

01-工厂模式 ( Factory Pattern )

工厂模式 Factory Pattern 摘要实现范例 工厂模式(Factory Pattern)提供了一种创建对象的最佳方式 工厂模式在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象 工厂模式属于创建型模式 摘要 1. 意图 …...

【LeetCode】每日一题 2024_2_2 石子游戏 VI(排序、贪心)

文章目录 LeetCode?启动!!!题目:石子游戏 VI题目描述代码与解题思路 LeetCode?启动!!! 题目:石子游戏 VI 题目链接:1686. 石子游戏 VI 题目描述…...

一站式在线协作开源办公软件ONLYOFFICE,协作更安全更便捷

1、ONLYOFFICE是什么? ONLYOFFICE是一款功能强大的在线协作办公软件,可以创建编辑Word文档、Excel电子表格,PowerPoint(PPT)演示文稿、Forms表单等多种文件。ONLYOFFICE支持多个平台,无论使用的是 Windows、…...

Java进击框架:Spring-综合(十)

Java进击框架:Spring-综合(十) 前言Rest ClientsWebClientRestTemplateHTTP接口 JMS (Java消息服务)使用Spring JMS发送消息接收消息注释驱动的侦听器端点 JMXEmail任务执行和调度Spring TaskExecutor 抽象Spring TaskScheduler 抽象支持调度…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...