Linux 驱动开发基础知识——内核对设备树的处理与使用(十)
个人名片:
![]()
🦁作者简介:学生
🐯个人主页:妄北y🐧个人QQ:2061314755
🐻个人邮箱:2061314755@qq.com
🦉个人WeChat:Vir2021GKBS
🐼本文由妄北y原创,首发CSDN🎊🎊🎊
🐨座右铭:大多数人想要改造这个世界,但却罕有人想改造自己。
专栏导航:
妄北y系列专栏导航:
C/C++的基础算法:C/C++是一种常用的编程语言,可以用于实现各种算法,这里我们对一些基础算法进行了详细的介绍与分享。🎇🎇🎇
QT基础入门学习:对QT的基础图形化页面设计进行了一个简单的学习与认识,利用QT的基础知识进行了翻金币小游戏的制作🤹🤹🤹
Linux基础编程:初步认识什么是Linux,为什么学Linux,安装环境,进行基础命令的学习,入门级的shell编程。🍻🍻🍻
Linux应用开发基础开发:分享Linux的基本概念、命令行操作、文件系统、用户和权限管理等,网络编程相关知识,TCP/IP 协议、套接字(Socket)编程等,可以实现网络通信功能。💐💐💐
Linux项目开发:Linux基础知识的实践,做项目是最锻炼能力的一个学习方法,这里我们会学习到一些简单基础的项目开发与应用,而且都是毕业设计级别的哦。🤸🤸🤸
非常期待和您一起在这个小小的互联网世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

文章介绍:
🎉本篇文章对Linux驱动基础学习的相关知识进行分享!🥳🥳🥳
上一章我们已经学习了设备树的语法,已经知道如何编译一个设备树,设备树是给内核给驱动使用的。内核和驱动程序该如何使用设备树呢?这一章我们进行一个详细的介绍。
如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作动力的源泉,让我们一起加油,一起奔跑,让我们顶峰相见!!!💪💪💪
🎁感谢大家点赞👍收藏⭐评论✍️
目录:
一、内核对设备树的处理
1.1 dtb 中每一个节点都被转换为 device_node 结构体
1.2 哪些设备树节点会被转换为 platform_device
1.3 怎么转换为 platform_device
1.4 platform_device 如何与 platform_driver 配对
编辑1.4.1 最先比较:是否强制选择某个 driver
1.4.2 然后比较:设备树信息
1.4.3 接下来比较:platform_device_id
1.4.4 最后比较
二、内核里操作设备树的常用函数
2.1 内核中设备树相关的头文件介绍
2.1.1 处理 DTB
2.1.2 处理 device_node
2.1.3 处理 platform_device
2.2 platform_device 相关的函数
2.2.1 of_find_device_by_node
2.2.2 platform_get_resource
2.3 有些节点不会生成 platform_device,怎么访问它们
2.3.1 找到节点
2.3.2 找到属性
2.3.3 获取属性的值
三、怎么修改设备树文件
3.1 使用芯片厂家提供的工具
3.2 看绑定文档
3.3 参考同类型单板的设备树文件
3.4 网上搜索
3.5 自己研究驱动源码
一、内核对设备树的处理
从源代码文件 dts 文件开始,设备树的处理过程为:

dts 在 PC 机上被编译为 dtb 文件;
u-boot 把 dtb 文件传给内核;
内核解析 dtb 文件,把每一个节点都转换为 device_node 结构体;
对于某些 device_node 结构体,会被转换为 platform_device 结构体。
1.1 dtb 中每一个节点都被转换为 device_node 结构体

根节点被保存在全局变量 of_root 中,从 of_root 开始可以访问到任意节点。
1.2 哪些设备树节点会被转换为 platform_device
(1)根节点下含有 compatile 属性的子节点
(2)含有特定 compatile 属性的节点的子节点
如果一个节点的 compatile 属性,它的值是这 4 者之一:"simple-bus","simple-mfd","isa","arm,amba-bus", 那么它的子结点 ( 需含 compatile 属性)也可以转换为 platform_device。
(3)总线 I2C、SPI 节点下的子节点:不转换为 platform_device。
某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被 转换为 platform_device。
比如以下的节点中:
/{mytest {compatile = "mytest", "simple-bus";mytest@0 {compatile = "mytest_0";};};i2c {compatile = "samsung,i2c";at24c02 {compatile = "at24c02"; };};spi {compatile = "samsung,spi"; flash@0 {compatible = "winbond,w25q32dw";spi-max-frequency = <25000000>;reg = <0>;};};};
⚫ /mytest 会被转换为 platform_device, 因为它兼容"simple-bus"; 它的子节点/mytest/mytest@0 也会被转换为 platform_device
⚫ /i2c 节点一般表示 i2c 控制器, 它会被转换为 platform_device, 在内核中有对应的 platform_driver;
⚫ /i2c/at24c02 节点不会被转换为 platform_device, 它被如何处理完全由父节点的 platform_driver 决定, 一般是被创建为一个 i2c_client。
⚫ /spi节点, 它一般也是用来表示 SPI 控制器, 它会被转换为 platform_device, 在内核中有对应的 platform_driver;
⚫ /spi/flash@0 节点不会被转换为 platform_device, 它被如何处理完全由父节点的 platform_driver 决定, 一般是被创建为一个 spi_device。
1.3 怎么转换为 platform_device
内核处理设备树的函数调用过程,这里不去分析;我们只需要得到如下结论:
◼ platform_device 中含有 resource 数组, 它来自 device_node 的 reg, interrupts 属性; ◼ platform_device.dev.of_node 指向 device_node, 可以通过它获得其他属性
1.4 platform_device 如何与 platform_driver 配对
从设备树转换得来的 platform_device 会被注册进内核里,以后当我们每注册一个 platform_driver 时,它们就会两两确定能否配对,如果能配对成功 就调用 platform_driver 的 probe 函数。

1.4.1 最先比较:是否强制选择某个 driver
⚫ 比较:platform_device.driver_override 和 platform_driver.driver.name
可以设置 platform_device 的 driver_override,强制选择某个 platform_driver。
1.4.2 然后比较:设备树信息
⚫ 比较: platform_device.dev.of_node 和 platform_driver.driver.of_match_table。
由设备树节点转换得来的 platform_device 中,含有一个结构体:of_node。
它的类型如下:

如果一个 platform_driver 支持设备树 , 它的platform_driver.driver.of_match_table 是一个数组
它的类型如下:

使用设备树信息来判断 dev 和 drv 是否配对时:
首先,如果 of_match_table 中含有 compatible 值,就跟 dev 的 compatile 属性比较,若一致则成功,否则返回失败;
其次,如果 of_match_table 中含有 type 值,就跟 dev 的 device_type 属性 比较,若一致则成功,否则返回失败;
最后,如果 of_match_table 中含有 name 值,就跟 dev 的 name 属性比 较,若一致则成功,否则返回失败。
而设备树中建议不再使用 devcie_type 和 name 属性,所以基本上只使用设备节点的 compatible 属性来寻找匹配的 platform_driver。
1.4.3 接下来比较:platform_device_id
比较 platform_device. name 和 platform_driver.id_table[i].name, id_table 中可能有多项。
platform_driver.id_table 是“platform_device_id”指针,表示该 drv 支持若干个 device,它里面列出了各个 device 的{.name, .driver_data}, 其中的“name”表示该 drv 支持的设备的名字,driver_data 是些提供给该 device 的私有数据。
1.4.4 最后比较
⚫ platform_device.name 和 platform_driver.driver.name
platform_driver.id_table 可能为空, 这时可以根据 platform_device.name 来寻找同名的 platform_device。

二、内核里操作设备树的常用函数
内核源码中 include/linux/目录下有很多 of 开头的头文件,of 表示“open firmware”即开放固件
2.1 内核中设备树相关的头文件介绍
设备树的处理过程是:dtb -> device_node -> platform_device。
2.1.1 处理 DTB
of_fdt.h // dtb 文件的相关操作函数, 我们一般用不到,
// 因为 dtb 文件在内核中已经被转换为 device_node 树(它更易于使用)
2.1.2 处理 device_node
of.h // 提供设备树的一般处理函数,
// 比如 of_property_read_u32(读取某个属性的 u32 值),
// of_get_child_count(获取某个 device_node 的子节点数)
of_address.h // 地址相关的函数,
// 比如 of_get_address(获得 reg 属性中的 addr, size 值)
// of_match_device (从 matches 数组中取出与当前设备最匹配的一项)
of_dma.h // 设备树中 DMA 相关属性的函数
of_gpio.h // GPIO 相关的函数
of_graph.h // GPU 相关驱动中用到的函数, 从设备树中获得 GPU 信息
of_iommu.h // 很少用到
of_irq.h // 中断相关的函数
of_mdio.h // MDIO (Ethernet PHY) API
of_net.h // OF helpers for network devices.
of_pci.h // PCI 相关函数
of_pdt.h // 很少用到
of_reserved_mem.h // reserved_mem 的相关函数
2.1.3 处理 platform_device
of_platform.h // 把 device_node 转换为 platform_device 时用到的函数, // 比如 of_device_alloc(根据 device_node 分配设置 platform_device), // of_find_device_by_node (根据 device_node 查找到 platform_device),// of_platform_bus_probe (处理 device_node 及它的子节点)
of_device.h // 设备相关的函数, 比如 of_match_device
2.2 platform_device 相关的函数
of_platform.h 中声明了很多函数,但是作为驱动开发者,我们只使用其中 的 1、2 个。其他的都是给内核自己使用的,内核使用它们来处理设备树,转换得到 platform_device。
2.2.1 of_find_device_by_node
函数原型为:
extern struct platform_device *of_find_device_by_node(struct device_node *np);
设备树中的每一个节点,在内核里都有一个 device_node;你可以使用 device_node 去找到对应的 platform_device。
2.2.2 platform_get_resource
这个函数跟设备树没什么关系 , 但是设备树中的节点被转换为platform_device 后,设备树中的 reg 属性、interrupts 属性也会被转换为“resource”。
这时,你可以使用这个函数取出这些资源。
函数原型为:
/**
* platform_get_resource - get a resource for a device
* @dev: platform device
* @type: resource type // 取哪类资源?IORESOURCE_MEM、IORESOURCE_REG
* // IORESOURCE_IRQ 等
* @num: resource index // 这类资源中的哪一个?
*/
struct resource *platform_get_resource(struct platform_device *dev,unsigned int type, unsigned int num);
对于设备树节点中的 reg 属性,它对应 IORESOURCE_MEM 类型的资源;
对于设备树节点中的 interrupts 属性,它对应 IORESOURCE_IRQ 类型的资源。
2.3 有些节点不会生成 platform_device,怎么访问它们
内核会把 dtb 文件解析出一系列的 device_node 结构体,我们可以直接访问这些 device_node。
内核源码 incldue/linux/of.h 中声明了 device_node 和属性 property 的操作函数,device_node 和 property 的结构体定义如下:

2.3.1 找到节点
(1)of_find_node_by_path
根据路径找到节点,比如“/”就对应根节点,“/memory”对应 memory 节点。
函数原型:
static inline struct device_node *of_find_node_by_path(const char *path);
(2)of_find_node_by_name
根据名字找到节点,节点如果定义了 name 属性,那我们可以根据名字找到它
函数原型:
extern struct device_node *of_find_node_by_name(struct device_node *from,const char *name);
参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
但是在设备树的官方规范中不建议使用“name”属性,所以这函数也不建议使用。
(3)of_find_node_by_type
根据类型找到节点,节点如果定义了 device_type 属性,那我们可以根据类型找到它。
函数原型:
extern struct device_node *of_find_node_by_type(struct device_node *from, const char *type);
参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
但是在设备树的官方规范中不建议使用“device_type”属性,所以这函数也不建议使用。
(4)of_find_compatible_node
根据 compatible 找到节点,节点如果定义了 compatible 属性,那我们可以根据 compatible 属性找到它。
函数原型:
extern struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compat);
⚫ 参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
⚫ 参数 compat 是一个字符串,用来指定 compatible 属性的值;
⚫ 参数 type 是一个字符串,用来指定 device_type 属性的值,可以传入 NULL。
(5) of_find_node_by_phandle
根据 phandle 找到节点。dts 文件被编译为 dtb 文件时,每一个节点都有一个数字 ID,这些数字 ID 彼此不同。可以使用数字 ID 来找到 device_node。 这些数字 ID 就是 phandle。
函数原型:
extern struct device_node *of_find_node_by_phandle(phandle handle);
参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
(6)of_get_parent
· 找到 device_node 的父节点。
函数原型:
extern struct device_node *of_get_parent(const struct device_node *node);
参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
(7)of_get_next_parent
这个函数名比较奇怪,怎么可能有“next parent”?
它实际上也是找到 device_node 的父节点,跟 of_get_parent 的返回结果是一样的。
差别在于它多调用下列函数,把 node 节点的引用计数减少了 1。这意味着调用 of_get_next_parent 之后,你不再需要调用 of_node_put 释放 node 节点。
of_node_put(node);
函数原型:
extern struct device_node *of_get_next_parent(struct device_node *node);
参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。
(8)of_get_next_child
取出下一个子节点。
函数原型:
extern struct device_node *of_get_next_child(const struct device_node *node,struct device_node *prev);
⚫ 参数 node 表示父节点;
⚫ prev 表示上一个子节点,设为 NULL 时表示想找到第 1 个子节点。
不断调用 of_get_next_child 时,不断更新 pre 参数,就可以得到所有的子节点。
(9)of_get_next_available_child
取出下一个“可用”的子节点,有些节点的 status 是“disabled”,那就会跳过这些节点。
函数原型:
struct device_node *of_get_next_available_child( const struct device_node *node,struct device_node *prev);
⚫ 参数 node 表示父节点;
⚫ prev 表示上一个子节点,设为 NULL 时表示想找到第 1 个子节点。
(10)of_get_child_by_name
根据名字取出子节点。
函数原型:
extern struct device_node *of_get_child_by_name(const struct device_node *node,const char *name);
⚫ 参数 node 表示父节点;
⚫ name 表示子节点的名字。
2.3.2 找到属性
内核源码 incldue/linux/of.h 中声明了 device_node 的操作函数,当然也包括属性的操作函数:of_find_property
找到节点中的属性。
函数原型:
extern struct property *of_find_property(const struct device_node *np,const char *name,int *lenp);
⚫ 参数 np 表示节点,我们要在这个节点中找到名为 name 的属性。
⚫ lenp 用来保存这个属性的长度,即它的值的长度。
在设备树中,节点大概是这样:
xxx_node {xxx_pp_name = “hello”;
};
上述节点中,“xxx_pp_name”就是属性的名字,值的长度是 6。
2.3.3 获取属性的值
(1)of_get_property
根据名字找到节点的属性,并且返回它的值。
函数原型:
/*
* Find a property with a given name for a given node
* and return the value.
*/
const void *of_get_property(const struct device_node *np,const char *name,int *lenp)
⚫ 参数 np 表示节点,我们要在这个节点中找到名为 name 的属性,然后返回它的值。
⚫ lenp 用来保存这个属性的长度,即它的值的长度。
(2)of_property_count_elems_of_size
根据名字找到节点的属性,确定它的值有多少个元素(elem)。
函数原型:
* of_property_count_elems_of_size - Count the number of elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @elem_size: size of the individual element
*
* Search for a property in a device node and count the number of elements of
* size elem_size in it. Returns number of elements on sucess, -EINVAL if the
* property does not exist or its length does not match a multiple of elem_size
* and -ENODATA if the property does not have a value.
*/
int of_property_count_elems_of_size(const struct device_node *np,const char *propname,int elem_size)
参数 np 表示节点,我们要在这个节点中找到名为 propname 的属性,然后返回下列结果:
return prop->length / elem_size;
在设备树中,节点大概是这样:
xxx_node {xxx_pp_name = <0x50000000 1024> <0x60000000 2048>;
};
⚫ 调用 of_property_count_elems_of_size(np, “xxx_pp_name”, 8)时,返回值是 2;
⚫ 调用 of_property_count_elems_of_size(np, “xxx_pp_name”, 4)时,返回值是 4。
(3)读整数 u32/u64
函数原型为:
static inline int of_property_read_u32(const struct device_node *np,const char *propname,u32 *out_value);extern int of_property_read_u64(const struct device_node *np,const char *propname,u64 *out_value);
在设备树中,节点大概是这样:
xxx_node {name1 = <0x50000000>;name2 = <0x50000000 0x60000000>;
};
⚫ 调用 of_property_read_u32 (np, “name1”, &val)时,val 将得到值 0x50000000;
⚫ 调用 of_property_read_u64 (np, “name2”, &val)时,val 将得到值 0x6000000050000000。
(4)读某个整数 u32/u64
函数原型为:
extern int of_property_read_u32_index(const struct device_node *np,const char *propname,u32 index, u32 *out_value);
在设备树中,节点大概是这样:
xxx_node {name2 = <0x50000000 0x60000000>;
};
⚫ 调用 of_property_read_u32 (np, “name2”, 1, &val)时,val 将得到值 0x60000000。
(5)读数组
函数原型为:
int of_property_read_variable_u8_array(const struct device_node *np,const char *propname,u8 *out_values,size_t sz_min, size_t sz_max);
int of_property_read_variable_u16_array(const struct device_node *np,const char *propname,u16 *out_values,size_t sz_min, size_t sz_max);
int of_property_read_variable_u32_array(const struct device_node *np,const char *propname,u32 *out_values,size_t sz_min, size_t sz_max);
int of_property_read_variable_u64_array(const struct device_node *np,const char *propname,u64 *out_values,size_t sz_min, size_t sz_max);
在设备树中,节点大概是这样:
xxx_node {name2 = <0x50000012 0x60000034>;
};
上述例子中属性 name2 的值,长度为 8。
⚫ 调用 of_property_read_variable_u8_array (np, “name2”, out_values, 1, 10)时, out_values 中将会保存这 8 个字节: 0x12,0x00,0x00,0x50,0x34,0x00,0x00,0x60。
⚫ 调用 of_property_read_variable_u16_array (np, “name2”, out_values, 1, 10)时, out_values 中将会保存这 4 个 16 位数值: 0x0012, 0x5000,0x0034,0x6000。 总之,这些函数要么能取到全部的数值,要么一个数值都取不到;
⚫ 如果值的长度在 sz_min 和 sz_max 之间,就返回全部的数值;
⚫ 否则一个数值都不返回。
(6)读字符串
函数原型为:
int of_property_read_string(const struct device_node *np, const char *propname,const char **out_string);
⚫ 返回节点 np 的属性(名为 propname)的值;
⚫ (*out_string)指向这个值,把它当作字符串。
三、怎么修改设备树文件
一个写得好的驱动程序, 它会尽量确定所用资源。只把不能确定的资源留给设备树, 让设备树来指定。根据原理图确定"驱动程序无法确定的硬件资源", 再在设备树文件中填写对应内容。
3.1 使用芯片厂家提供的工具
有些芯片,厂家提供了对应的设备树生成工具,可以选择某个引脚用于某些功能,就可以自动生成设备树节点。
你再把这些节点复制到内核的设备树文件里即可。
3.2 看绑定文档
内核文档 Documentation/devicetree/bindings/
做得好的厂家也会提供设备树的说明文档
3.3 参考同类型单板的设备树文件
3.4 网上搜索
3.5 自己研究驱动源码
设备树在驱动中的使用
大佬觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍
🔥🔥🔥任务在无形中完成,价值在无形中升华,让我们一起加油吧!🌙🌙🌙
![]()

相关文章:
Linux 驱动开发基础知识——内核对设备树的处理与使用(十)
个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…...
编程笔记 html5cssjs 077 Javascript 关键字
编程笔记 html5&css&js 077 Javascript 关键字 一、关键字二、Javascript关键字注意 在计算机编程语言中,关键字(Keyword)是指那些被编程语言赋予特殊含义、具有预定义用途的保留字。这些词汇不能用作变量名、函数名或其他标识符&…...
LeetCode_19_中等_删除链表的倒数第N个结点
文章目录 1. 题目2. 思路及代码实现(Python)2.1 计算链表长度2.2 栈 1. 题目 给你一个链表,删除链表的倒数第 n n n 个结点,并且返回链表的头结点。 示例 1: 输入: h e a d [ 1 , 2 , 3 , 4 , 5 ] , n…...
C++泛编程(3)
类模板基础 1.类模板的基本概念2.类模板的分文件编写3.类模板的嵌套 (未完待续...) 在往节内容中,我们详细介绍了函数模板,这节开始我们就来聊一聊类模板。C中,类的细节远比函数多,所以这个专题也会更复杂。…...
python基于django的公交线路查询系统mf383
1.个人信息的管理:对用户名,密码的增加、删除等 2.线路信息的管理:对线路的增加、修改、删除等 3.站点信息的管理:对站点的增加、修改、删除等 4.车次信息的管理:对车次的增加、修改、删除等 5.线路查询、站点查询 …...
ElementUI 组件:Container 布局容器实例
ElementUI安装与使用指南 Container 布局容器 点击下载learnelementuispringboot项目源码 效果图 el-container-example.vue(Container 布局容器实例)页面效果图 项目里el-container-example.vue代码 <script> export default {name: el_cont…...
【数据结构 09】哈希
哈希算法:哈希也叫散列、映射,将任意长度的输入通过散列运算转化为固定长度的输出,该输出就是哈希值(散列值)。 哈希映射是一种压缩映射,通常情况下,散列值的空间远小于输入值的空间。 哈希运…...
理解和管理Linux文件权限
理解和管理Linux文件权限 文件权限的基本概念和表示方式 文件权限管理在Linux系统中是非常重要的,它决定了谁可以访问、读取、写入或执行文件。文件权限以及所有者、所属组等属性可以通过 ls -l 命令查看。 在 ls -l 命令的输出中,文件的权限通常表示…...
爬虫(二)
1.同步获取短视频 1.只要播放地址对Json数据解析,先把列表找出: 2.只想要所有的播放地址,通过列表表达式循环遍历这个列表拿到每个对象,再从一个个对象里面找到Video,再从Video里面找到播放地址(play_addr),再从播放地址找到播放…...
Flink实战四_TableAPISQL
接上文:Flink实战三_时间语义 1、Table API和SQL是什么? 接下来理解下Flink的整个客户端API体系,Flink为流式/批量处理应用程序提供了不同级别的抽象: 这四层API是一个依次向上支撑的关系。 Flink API 最底层的抽象就是有状态实…...
海外云手机开辟企业跨境电商新道路
近几年,海外云手机为跨境电商、海外媒体引流、游戏行业等互联网领域注入了蓬勃活力。对于国内跨境电商而言,在亚马逊及其他平台上,短视频引流和社交电商营销成为最为有效的流量来源。如何通过海外云手机的助力,在新兴社交平台为企…...
【51单片机系列】中断优先级介绍及使用
文章来源:《51单片机原理及应用(第3版)》5.4节。 51单片机采用了自然优先级和人工设置高、低优先级的策略。 当CPU处理低优先级中断,又发生更高级中断时,此时中断处理过程如下图所示。 一个正在执行的低优先级中断服…...
.net core 6 集成 elasticsearch 并 使用分词器
1、nuget包安装NEST、安装elasticsearch、kibana、ik分词器、拼音分词器 2、创建操作对象 //索引库 static string indexName "testparticper"; //es 操作对象 ElasticClient elasticClient new ElasticClient(new ConnectionSettings(new Uri("http://192.…...
Unity项目从built-in升级到URP(包含早期版本和2023版本)
unity不同版本的升级URP的方式不一样,但是大体流程是相似的 首先是加载URP包 Windows -> package manager,在unity registry中找到Universal RP 2023版本: 更早的版本: 创建URP资源和渲染器 有些版本在加载时会自动创建&#…...
2月4号作业
编写程序实现二叉树的创建,三种遍历自己销毁 #include <myhead.h>#define TRUE 1 #define FALSE 0 #define OVERFLOW -2 #define OK 1 #define ERROR 0#define INIT_SIZE 20 #define INCREMENT_SIZE 5typedef int Status; typedef int TElemType; //存储结构…...
瑞_23种设计模式_建造者模式
文章目录 1 建造者模式(Builder Pattern)1.1 介绍1.2 概述1.3 创作者模式的结构 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 模式拓展 ★★★4.1 重构前4.2 重构后 5 总结5.1 建造者模式优缺点5.2 建造者模式使用场景5.3 建造者模式 …...
GA/T 1707-2019 防爆安全门检测
防爆安全门是指能抵抗爆炸冲击波作用的特种防护门,根据防爆门的防爆性能的不同,分为非接触爆炸防爆门和防接触爆炸防爆门,根据防爆能力的不同,分为不同等级。 GA/T 1707-2019 防爆安全门检测项目 测试项目 测试标准 外观质量 …...
k8s学习-数据管理
在Docker中我们知道,要想实现数据的持久化(所谓Docker的数据持久化即数据不随着Container的结束而结束),需要将数据从宿主机挂载到容器中,常用的手段就是Volume数据卷。在K8S中,也提供了存储模型Volume&…...
java hutool工具类实现将数据下载到excel
通过hutool工具类,对于excel的操作变得非常简单,上篇介绍的是excel的上传,对excel的操作,核心代码只有一行。本篇的excel的下载,核心数据也不超过两行,简洁方便,特别适合当下的低代码操作。 下载…...
【C/Python】Gtk部件ListStore的使用
一、C语言 在GTK中,Gtk.ListStore是一个实现了Gtk.TreeModel接口的存储模型,用于在如Gtk.TreeView这样的控件中存储数据。以下是一个简单的使用Gtk.ListStore的C语言示例,该示例创建了一个列表,并在图形界面中显示: …...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
