HBase相关面试准备问题
为什么选择HBase
1、海量存储
Hbase适合存储PB级别的海量数据,在PB级别的数,能在几十到几百毫秒内返回数据。这与Hbase的极易扩展性息息相关。正是因为Hbase良好的扩展性,才为海量数据的存储提供了便利。
2、列式存储
这里的列式存储其实说的是列族存储,Hbase是根据列族来存储数据的。HBase中的每个列都由Column Family(列族)和Column Qualifier(列限定符)进行限定,例如info:name,info:age。
3、极易扩展
Hbase的扩展性主要体现在两个方面,一个是基于上层处理能力(RegionServer)的扩展,一个是基于存储的扩展(HDFS)。
通过横向添加RegionSever的机器,进行水平扩展,提升Hbase上层的处理能力,提升Hbsae服务更多Region的能力。
4、稀疏
稀疏主要是针对Hbase列的灵活性,在列族中,你可以指定任意多的列,在列数据为空的情况下,是不会占用存储空间的。
5、 数据多版本
数据多版本:每个单元中的数据可以有多个版本,默认情况下,版本号自动分配,版本号就是单元格插入时的时间戳。
HBase架构与角色
架构图
角色
(1)Region Server
Region Server为 Region的管理者,其实现类为HRegionServer,主要作用如下:
对于数据的操作:get, put, delete;
对于Region的操作:splitRegion、compactRegion。
- StoreFile
保存实际数据的物理文件,StoreFile以Hfile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。
- MemStore
写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。
- WAL
由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Ahead logfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。
- BlockCache
读缓存,每次查询出的数据会缓存在BlockCache中,方便下次查询。
(2)Master
Master是所有Region Server的管理者,其实现类为HMaster,主要作用如下:
对于表的操作:create, delete, alter
对于RegionServer的操作:分配regions到每个RegionServer,监控每个RegionServer的状态,负载均衡和故障转移。
(3)Zookeeper
HBase通过Zookeeper来做master的高可用、RegionServer的监控、元数据的入口以及集群配置的维护等工作。
(4)HDFS
HDFS为Hbase提供最终的底层数据存储服务,同时为HBase提供高可用的支持。
HBase存储结构
逻辑结构
物理存储结构
(1)Name Space
命名空间,类似于关系型数据库的database概念,每个命名空间下有多个表。HBase两个自带的命名空间,分别是hbase和default,hbase中存放的是HBase内置的表,default表是用户默认使用的命名空间。
2)Table
类似于关系型数据库的表概念。不同的是,HBase定义表时只需要声明列族即可,不需要声明具体的列。这意味着,往HBase写入数据时,字段可以动态、按需指定。因此,和关系型数据库相比,HBase能够轻松应对字段变更的场景。
(3)Row
HBase表中的每行数据都由一个RowKey和多个Column(列)组成,数据是按照RowKey的字典顺序存储的,并且查询数据时只能根据RowKey进行检索,所以RowKey的设计十分重要。
(4)Column
HBase中的每个列都由Column Family(列族)和Column Qualifier(列限定符)进行限定,例如info:name,info:age。建表时,只需指明列族,而列限定符无须预先定义。
(5)Time Stamp
用于标识数据的不同版本(version),每条数据写入时,系统会自动为其加上该字段,其值为写入HBase的时间。
(6)Cell
由{rowkey, column Family:column Qualifier, time Stamp} 唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。
HBase写流程
写流程
(1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
(2)访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及metA表的位置信息缓存在客户端的meta cache,方便下次访问。
(3)与目标Region Server进行通讯。
(4)将数据顺序写入(追加)到WAL。
(5)将数据写入对应的MemStore,数据会在MemStore进行排序。
(6)向客户端发送ack。
(7)等达到MemStore的刷写时机后,将数据刷写到HFile。
MemStore刷写时机
(1)当某个memstroe的大小达到了默认值128M,其所在region的所有memstore都会刷写。
hbase.hregion.memstore.flush.size(默认值128M)
当memstore的大小达到了以下,会阻止继续往该memstore写数据。
block.multiplier默认值4,如果一个Memstore的内存大小已经超过hbase.hregion.memstore.flush.size * hbase.hregion.memstore.block.multiplier,则会阻塞该Memstore的写操作,为避免阻塞,可以适当调大,例如6~8,但如果太大,则会有OOM的风险
hbase.hregion.memstore.flush.size(默认值128M)hbase.hregion.memstore.block.multiplier(默认值4)
(2) 当region server中memstore的总大小达到java_heapsize百分比时候,region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到region server中所有memstore的总大小减小到下述值以下。
HBase 为 RegionServer 的 MemStore 分配了一定的写缓存,
大小等于 hbase_heapsize(RegionServer 占用的堆内存大小)* hbase.regionserver.global.memstore.size。hbase.regionserver.global.memstore.size 的默认值是 0.4,
也就是说写缓存大概占用 RegionServer 整个 JVM 内存使用量的 40%。
如果整个 RegionServer 的 MemStore 占用内存总和大于 hbase.regionserver.global.memstore.size.lower.limit * hbase.regionserver.global.memstore.size * hbase_heapsize 的时候,
将会触发 MemStore 的刷写。
其中 hbase.regionserver.global.memstore.size.lower.limit 的默认值为 0.95。
hbase.regionserver.global.memstore.size(默认值0.4)
hbase.regionserver.global.memstore.size.lower.limit(默认值0.95)
当region server中memstore的总大小达到,java_heapsize时,会阻止继续往所有的memstore写数据。
hbase.regionserver.global.memstore.size(默认值0.4)
(3) 到达自动刷写的时间,也会触发memstore flush。自动刷新的时间间隔由该属性进行配置。
hbase.regionserver.optionalcacheflushinterval(默认1小时)
(4) 当WAL文件的数量超过hbase.regionserver.max.logs(最大值为32),region会按照时间顺序依次进行刷写。
HBase读流程
读流程
(1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
(2)访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。
(3)与目标Region Server进行通讯。
(4)分别在MemStore和Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。
(5)将查询到的新的数据块(Block,HFile数据存储单元,默认大小为64KB)缓存到Block Cache。
(6)将合并后的最终结果返回给客户端。
StoreFile Compaction
由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp)和不同类型(Put/Delete)有可能会分布在不同的HFile中,因此查询时需要遍历所有的HFile。为了减少HFile的个数,以及清理掉过期和删除的数据,会进行StoreFile Compaction。
Compaction分为两种,分别是Minor Compaction和Major Compaction。Minor Compaction会将邻近的若干个较小的HFile合并成一个较大的HFile,并清理掉部分过期和删除的数据。Major Compaction会将一个Store下的所有的HFile合并成一个大HFile,并且会清理掉所有过期和删除的数据。
Region Split
默认情况下,每个Table起初只有一个Region,随着数据的不断写入,Region会自动进行拆分。刚拆分时,两个子Region都位于当前的Region Server,但处于负载均衡的考虑,HMaster有可能会将某个Region转移给其他的Region Server。
Region Split时机
当1个region中的某个Store下所有StoreFile的总大小超过下面的值,该Region就会进行拆分。
Min(initialSize*R^3 ,hbase.hregion.max.filesize")其中initialSize的默认值为2*hbase.hregion.memstore.flush.sizeR为当前Region Server中属于该Table的Region个数)
具体的切分策略为:
第一次split:1^3 * 256 = 256MB
第二次split:2^3 * 256 = 2048MB
第三次split:3^3 * 256 = 6912MB
第四次split:4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
后面每次split的size都是10GB了。
HBase与Hive的对比
Hive
(1) 数据仓库
Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。
(2) 用于数据分析、清洗
Hive适用于离线的数据分析和清洗,延迟较高。
(3) 基于HDFS、MapReduce
Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。
HBase
(1)数据库
是一种面向列存储的非关系型数据库。
(2) 用于存储结构化和非结构化的数据
适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作。
(3) 基于HDFS
数据持久化存储的体现形式是Hfile,存放于DataNode中,被ResionServer以region的形式进行管理。
(4) 延迟较低,接入在线业务使用
面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度。
预分区
每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高HBase性能。
方式
(1)手动设定预分区
create 'staff','info','partition',SPLITS => ['100000','200000','300000','400000']
(2)16进制序列预分区
create 'staff','info','partition',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
(3)按照文件中设置的规则预分区
1111
2222
3333
4444create 'staff','partition',SPLITS_FILE => 'splits.txt'
(4)JavaAPI创建预分区
//自定义算法,产生一系列Hash散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建HBaseAdmin实例
HBaseAdmin hAdmin = new HBaseAdmin(HBaseConfiguration.create());
//创建HTableDescriptor实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过HTableDescriptor实例和散列值二维数组创建带有预分区的HBase表
hAdmin.createTable(tableDesc, splitKeys);
RowKey设计
设计原则
(1)rowkey长度原则
Rowkey是一个二进制数据流,Rowkey的长度建议设计在10-100个字节,不过建议是越短越好,不要超过16个字节。如果设置过长,会极大影响Hfile的存储效率。
MemStore将缓存部分数据到内存,如果Rowkey字段过长内存的有效利用率降低,系统将无法缓存更多的数据,这会降低检索效率。
(2)rowkey散列原则
如果Rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将Rowkey的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个Regionserver实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有新数据都在一个 RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别RegionServer,降低查询效率。
(3)rowkey唯一原则
如何设计
(1)生成随机数、hash、散列值
(2)字符串反转
HBase优化
高可用
在HBase中Hmaster负责监控RegionServer的生命周期,均衡RegionServer的负载,如果Hmaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以,HBase支持对Hmaster的高可用
内存优化
HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase的Java堆。但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。
配置优化
(1)开启HDFS追加同步,可以优秀的配合HBase的数据同步和持久化。默认值为true。
dfs.support.append
(2)HBase一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:4096。
fs.datanode.max.transfer.threads
(3)优化延迟高的数据操作的等待时间
如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。
dfs.image.transfer.timeout
(4)优化数据的写入效率
开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true,第二个属性值修改为:org.apache.bigdata.io.compress.GzipCodec或者其他压缩方式。
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
(5)优化HStore文件大小
默认值10GB,如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。
hbase.hregion.max.filesize
(6)优化HBase客户端缓存
用于指定HBase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。
hbase.client.write.buffer
(7) 指定scan.next扫描HBase所获取的行数
用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。
hbase.client.scanner.caching
(8)flush、compact、split机制
当MemStore达到阈值,将Memstore中的数据Flush进Storefile;compact机制则是把flush出来的小文件合并成大的Storefile文件。split则是当Region达到阈值,会把过大的Region一分为二。
128M就是Memstore的默认阈值hbase.hregion.memstore.flush.size:134217728
当MemStore使用内存总量达到HBase.regionserver.global.memstore.upperLimit指定值时,将会有多个MemStores flush到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到MemStore使用内存略小于lowerLimit
hbase.regionserver.global.memstore.upperLimit:0.4hbase.regionserver.global.memstore.lowerLimit:0.38
Phoenix二级索引
在Hbase中,按字典顺序排序的rowkey是一级索引。不通过rowkey来查询数据时需要过滤器来扫描整张表。通过二级索引,这样的场景也可以轻松定位到数据。
二级索引的原理通常是在写入时针对某个字段和rowkey进行绑定,查询时先根据这个字段查询到rowkey,然后根据rowkey查询数据,二级索引也可以理解为查询数据时多次使用索引的情况。
索引
全局索引
全局索引适用于多读少写的场景,在写操作上会给性能带来极大的开销,因为所有的更新和写操作(DELETE,UPSERT VALUES和UPSERT SELECT)都会引起索引的更新,在读数据时,Phoenix将通过索引表来达到快速查询的目的。
本地索引
本地索引适用于写多读少的场景,当使用本地索引的时候即使查询的所有字段都不在索引字段中时也会用到索引进行查询,Phoneix在查询时会自动选择是否使用本地索引。
覆盖索引
只需要通过索引就能返回所要查询的数据,所以索引的列必须包含所需查询的列。
函数索引
索引不局限于列,可以合适任意的表达式来创建索引,当在查询时用到了这些表达式时就直接返回表达式结果
索引优化
(1)根据主表的更新来确定更新索引表的线程数
index.builder.threads.max:(默认值:10)
(2)builder线程池中线程的存活时间
index.builder.threads.keepalivetime:(默认值:60)
(3)更新索引表时所能使用的线程数(即同时能更新多少张索引表),其数量最好与索引表的数量一致
index.write.threads.max:(默认值:10)
(4) 更新索引表的线程所能存活的时间
index.write.threads.keepalivetime(默认值:60)
(5) 每张索引表所能使用的线程(即在一张索引表中同时可以有多少线程对其进行写入更新),增加此值可以提高更新索引的并发量
hbase.htable.threads.max(默认值:2147483647)
(6) 索引表上更新索引的线程的存活时间
hbase.htable.threads.keepalivetime(默认值:60)
(7) 允许缓存的索引表的数量
增加此值,可以在更新索引表时不用每次都去重复的创建htable,由于是缓存在内存中,所以其值越大,其需要的内存越多
index.tablefactoy.cache.size(默认值:10)
相关文章:

HBase相关面试准备问题
为什么选择HBase 1、海量存储 Hbase适合存储PB级别的海量数据,在PB级别的数,能在几十到几百毫秒内返回数据。这与Hbase的极易扩展性息息相关。正是因为Hbase良好的扩展性,才为海量数据的存储提供了便利。 2、列式存储 这里的列式存储其实说的…...
sklearn实现数据标准化(Standardization)和归一化(Normalization)
标准化(Standardization) sklearn的标准化过程,即包括Z-Score标准化,也包括0-1标准化,并且即可以通过实用函数来进行标准化处理,同时也可以利用评估器来执行标准化过程。接下来我们分不同功能以的不同实现…...

做技术的应该是没有什么你不会
这句话放在现在很多年轻人的观念来评价,肯定是错的。但小编一直捧为真理,也一直践行着。 我记不得这话可能也是谁给我讲的。 先讲故事吧。 小编刚参加工作是做技术支持,我所在公司是给一些软件开发企业提供智能卡读写机具,并配…...

MySQL进阶45讲【10】MySQL为什么有时候会选错索引?
1 前言 前面我们介绍过索引,在MySQL中一张表其实是可以支持多个索引的。但是,写SQL语句的时候,并没有主动指定使用哪个索引。也就是说,使用哪个索引是由MySQL来确定的。 大家有没有碰到过这种情况,一条本来可以执行得…...
网络安全-端口扫描和服务识别的几种方式
禁止未授权测试!!! 前言 在日常的渗透测试中,我们拿到一个ip或者域名之后,需要做的事情就是搞清楚这台主机上运行的服务有哪些,开放的端口有哪些。如果我们连开放的端口和服务都不知道,下一步针…...

【分布式】雪花算法学习笔记
雪花算法学习笔记 来源 https://pdai.tech/md/algorithm/alg-domain-id-snowflake.html概述 雪花算法是推特开源的分布式ID生成算法,以划分命名空间的方式将64位分割成多个部分,每一个部分代表不同的含义,这种就是将64位划分成不同的段&…...
6.函数表达式 - JS
函数表达式 function (someArgs) { someStatements } function name(someArgs) { someStatements } (someArgs) > { someStatements }函数表达式就是要,在一个表达式中定义一个函数;箭头函数也是一个简洁的函数表达式;执行完函数表达式&a…...
【RK3288 Android10 C30 支持sim卡拔掉不弹窗,及热插拔】
文章目录 【RK3288 Android10 C30 支持sim卡拔掉不弹窗,及热插拔】需求方案patchframework【RK3288 Android10 C30 支持sim卡拔掉不弹窗,及热插拔】 需求 由于3288 硬件上的sim卡座不支持热插拔,是没有顶针来识别sim卡是否被拔掉的。所以在sim被拔掉或者松动的时候,会弹窗…...
python生成docx文件
使用python自动生成一张想要的docx文件 在这其中有指纹和公司盖章 from PIL import Image from docx import Document from docx.oxml.ns import qn from docx.shared import Pt, Inches, Cm from docx.enum.text import WD_PARAGRAPH_ALIGNMENT from xlsxtpl.writerx import …...

网络异常案例四_IP异常
问题现象 终端设备离线,现场根据设备ip,ping不通。查看路由器。 同一个路由器显示的终端设备(走同一个wifi模块接入),包含不同网段的ip。 现场是基于三层的无线漫游,多个路由器wifi配置了相同的ssid信息&a…...

Hack The Box-Challenges-Misc-M0rsarchive
解压压缩包,里面是一张图片和一个新的zip文件 图片放大后的图案是----. 考虑到为莫斯密码,将其解密 密码为9,继续解压缩包 又是一张莫斯密码图加压缩包,写一段脚本去解密图片中的莫斯密码,并自动解压缩包 import re i…...

验证码倒计时:用户界面的小细节,大智慧
欢迎来到我的博客,代码的世界里,每一行都是一个故事 验证码倒计时:用户界面的小细节,大智慧 前言为什么需要验证码倒计时防止滥用:用户心理: 设计考量可见性:友好性:适应性ÿ…...
Web后端:CSRF攻击及应对方法
CSRF攻击是开发Web后端时需要重点解决的问题。 那么什么是CSRF攻击呢? CSRF跨站点请求伪造(Cross—Site Request Forgery),其主要利用的是Cookie的一个弱点,就是Cookie 最初被设计成了允许在第三方网站发起的请求中携带: 关于Co…...
【手写数据库toadb】toadb表对象访问操作,存储管理抽象层软件架构设计思想应用
21 表文件访问秘密 专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更新,对应的代码也会定期更新,每个阶段的代码会打上tag,方便…...

SpringBoot使用Rabbit详解含完整代码
点击下载《SpringBoot使用Rabbit详解含完整代码》 1. 摘要 本文将详细介绍如何在Spring Boot应用程序中集成和使用RabbitMQ消息队列。RabbitMQ是一个开源的消息代理和队列服务器,用于通过轻量级和可靠的消息在应用程序或系统之间进行异步通信。本文将通过步骤说明…...
深度学习本科课程 实验3 网络优化
一、在多分类任务实验中实现momentum、rmsprop、adam优化器 1.1 任务内容 在手动实现多分类的任务中手动实现三种优化算法,并补全Adam中计算部分的内容在torch.nn实现多分类的任务中使用torch.nn实现各种优化器,并对比其效果 1.2 任务思路及代码 imp…...

Eclipse 安装使用ABAPGit
Eclipse->Help->Install New software 添加地址 https://eclipse.abapgit.org/updatesite/ 安装完成打开 选择abapGit repositories,先添加仓库 点下图添加自己仓库 如图添加仓库地址 添加完仓库后,点击我的仓库 右键选中行,可以进行push和pu…...
std::mutex std::recursive_mutex std::shared_mutex
std::mutex C11。最简单的互斥锁,1个线程内,不支持重复加锁。 std::lock_guard<std::mutex> lock(mutex) std::recursive_mutex C11。可以替代st::mutex,但性能会下降。1个线程内,支持重复加锁(可重入&#x…...
vscode的vetur文档格式化失效
如果vscode安装了vetur插件之后,shiftAltF又无法格式化vue文件代码。 解决办法:打开文件 ---> 首选项 ---> 设置,搜索 vetur.format.defaultFormatter.html后将prettier替换勾选为js-beautify-html 注:设置下划线了并可以在…...

idea 快捷键ctrl+shift+f失效的解决方案
文章目录 搜狗输入法快捷键冲突微软输入法快捷键冲突 idea的快捷键ctrlshiftf按了没反应,理论上是快捷键冲突了,检查搜狗输入法和微软输入法快捷键。 搜狗输入法快捷键冲突 不需要简繁切换的快捷键,可以关闭它,或修改快捷键。 微…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...