当前位置: 首页 > news >正文

Python初学者学习记录——python基础综合案例:数据可视化——动态柱状图

一、案例效果

        通过pyecharts可以实现数据的动态显示,直观的感受1960~2019年世界各国GDP的变化趋势

        

二、通过Bar构建基础柱状图

        

        反转x轴和y轴

        

        标签数值在右侧

        

from pyecharts.charts import Bar
from pyecharts.options import LabelOpts# 构建柱状图对象
bar = Bar()# 添加x轴数据
bar.add_xaxis(["中国", "美国", "英国"])
# 添加y轴数据
bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position="right"))
#反转x轴和y轴
bar.reversal_axis()# 绘图
bar.render("基础柱状图.html")

 

三、基础时间线柱状图的绘制

        1、Timeline()—时间线

              柱状图描述的是分类数据,回答的是每一个分类中【有多少?】这个问题,这是柱状图的主要特点,同时柱状图很难动态的描述一个趋势性的数据,这里pyecharts为我们提供了一种解决方案——时间线

              如果说一个Bar、Line对象是一张图表的话,时间线就是创建一个一维的x轴,轴上的每一个点就是一个图表对象

              

        2、创建时间线

        

        3、自动播放

        

        4、时间线设置主题

        

from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeTypebar1 = Bar()
bar1.add_xaxis(["中国", "美国", "英国"])
bar1.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position="right"))
bar1.reversal_axis()bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [50, 40, 30], label_opts=LabelOpts(position="right"))
bar2.reversal_axis()bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [70, 60, 40], label_opts=LabelOpts(position="right"))
bar3.reversal_axis()# 构建时间线
timeline = Timeline({"theme": ThemeType.MACARONS})
# 在时间线内部添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
# 自动播放设置
timeline.add_schema(play_interval=1000,         # 自动播放的时间间隔,单位毫秒is_timeline_show=True,      # 是否在自动播放的时候,显示时间线is_auto_play=True,          # 是否自动播放is_loop_play=True           # 是否循环自动播放
)# 绘图是用时间线对象绘图,而不是bar对象
timeline.render("基础时间线柱状图.html")

 

四、动态GDP柱状图的绘制

        1、列表的sort方法

              在前面我们学习过sorted函数,可以对数据容器进行排序。

              在后面的数据处理中,我们需要对列表进行排序,并指定排序规则,sorted函数就无法完成了。所以我们补充学习列表的sort方法。

              使用方法:

              列表.sort(key=选择排序依据的函数,reverse=True|False)

              · 参数key,是要求传入一个函数,表示将列表的每一个元素都传入函数中,返回排序的依据

              · 参数reverse,是否反转排序结果,True表示降序,False表示升序

              

# 准备列表
my_list = [["a", 33], ["b", 55], ["c", 11]]# 排序,基于带名函数
# def choose_sort_key(element):
#     return element[1]
# my_list.sort(key=choose_sort_key, reverse=True)
# print(my_list)# 排序,基于lambda匿名函数
my_list.sort(key=lambda element: element[1], reverse=True)
print(my_list)

 

        2、需求分析

        

        3、处理数据

        

        4、绘图

from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType# 读取数据
f = open("D:/1960-2019全球GDP数据.csv", "r", encoding="GB2312")
data_lines = f.readlines()
# 关闭文件
f.close()
# 删除第一条数据
data_lines.pop(0)
# 将数据转换为字典存储,格式为:
# {年份: [[国家, GDP],[国家, GDP],……], 年份: [[国家, GDP],[国家, GDP],……],……}
# 先定义一个字典对象
data_dict = dict()
for line in data_lines:year = int(line.split(",")[0])  # 年份country = line.split(",")[1]     # 国家GDP = float(line.split(",")[2]) # GDP数据# 如何判断字典里面有没有指定的key呢?try:data_dict[year].append([country, GDP])except KeyError:data_dict[year]=[]data_dict[year].append([country, GDP])# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})
# 排序年份
sorted_year_list = sorted(data_dict.keys())
for year in sorted_year_list:data_dict[year].sort(key=lambda element: element[1], reverse=True)# 取出本年份前八名的国家year_data = data_dict[year][:8]x_data = []y_data = []for country_gdp in year_data:x_data.append(country_gdp[0])   # x轴添加国家y_data.append(country_gdp[1] / 100000000)   # y轴添加gdp数据# 构建柱状图对象bar = Bar()x_data.reverse()y_data.reverse()bar.add_xaxis(x_data)bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转x轴和y轴bar.reversal_axis()# 设置每一年的图表标题bar.set_global_opts(title_opts=TitleOpts(title=f"{year}年全球前8名GDP数据"),toolbox_opts=ToolboxOpts(is_show=True))timeline.add(bar, str(year))# 设置时间线自动播放
timeline.add_schema(play_interval=500,is_timeline_show=True,is_auto_play=True,is_loop_play=False
)
# 绘图
timeline.render("1960-2019年全球GDP前8国家.html")

生成的图表链接(PC端打开):

http://localhost:63342/pythonProject/1960-2019%E5%B9%B4%E5%85%A8%E7%90%83GDP%E5%89%8D8%E5%9B%BD%E5%AE%B6.html?_ijt=e2vorgbc1leno4grnck9tsdg21&_ij_reload=RELOAD_ON_SAVE

相关文章:

Python初学者学习记录——python基础综合案例:数据可视化——动态柱状图

一、案例效果 通过pyecharts可以实现数据的动态显示,直观的感受1960~2019年世界各国GDP的变化趋势 二、通过Bar构建基础柱状图 反转x轴和y轴 标签数值在右侧 from pyecharts.charts import Bar from pyecharts.options import LabelOpts# 构建柱状图对象 bar Bar()…...

1.27马尔科夫链,抽样蒙特卡洛模拟(逆转化方法,接受拒绝矩阵),马尔科夫链蒙特卡洛MCMC,隐马尔科夫(HMM(V算法剪枝优化),NLP)

马尔科夫链 蒙特卡洛法模拟 抽样,逆转换方法 就是说由系统自带的随机函数RANDOM,通过下面这个方法,可以变为对应的随机模拟函数 就是说要实现蒙特卡洛模拟,是要先有一个概率表达式,然后基于这个概率表达式&#xff0…...

MC34063异常发热分析

问题描述: 工程现场反馈若干电源转换模块损坏,没有输出。拿到问题模块后,查看有一个MC34063周围的PCB有比较明显的高温痕迹,配套的电感也有明显的高温过热痕迹。 问题调查: MC34063的电路非常经典(虽然自…...

获取真实 IP 地址(一):判断是否使用 CDN(附链接)

一、介绍 CDN,全称为内容分发网络(Content Delivery Network),是一种网络架构,旨在提高用户对于网络上内容的访问速度和性能。CDN通过在全球各地部署分布式服务器节点来存储和分发静态和动态内容,从而减少…...

跨越财务困境,聚道云软件连接器如何助力企业轻松实现数字化转型?

客户介绍 某家庭服务科技有限公司是一家专注于提供高品质家庭服务的综合性企业。公司以“让家庭生活更美好”为使命,致力于为每一位客户提供专业、细致、周到的家庭服务。作为一家具有社会责任感的企业,该公司积极履行企业公民义务,关注家庭…...

Python接口自动化测试框架运行原理及流程

这篇文章主要介绍了Python接口自动化测试框架运行原理及流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本文总结分享介绍接口测试框架开发,环境使用python3selenium3unittestddtrequests测试框…...

strtok的使用

Strtok:原型char *strtok(char s[], const char *delim); s为要分解的字符,delim为分隔符字符(如果传入字符串,则传入的字符串中每个字符均为分割符)。首次调用时,s指向要分解的字符串,之后再次…...

0206作业

TCP(传输控制协议)和 UDP(用户数据报协议)是两种常用的网络传输协议。它们之间的主要区别在于: 可靠性:TCP 是一种可靠的传输协议,它提供了数据传输的确认、重传和排序功能。如果数据在传输过程…...

数据结构-栈

1.容器 容器用于容纳元素集合,并对元素集合进行管理和维护. 传统意义上的管理和维护就是:增,删,改,查. 我们分析每种类型容器时,主要分析其增,删,改&#xff…...

CentOS7搭建k8s-v1.28.6集群详情

文章目录 1.灌装集群节点操作系统1.1 设置hosts1.2 设置nameserver1.3 关闭防火墙1.4 关闭Selinux1.5 关闭Swap分区1.6 时间同步1.7 调整内核参数1.8 系统内核升级 2.安装Docker2.1 卸载旧Docker2.2 配置Docker软件源2.3 安装Docker 3.部署Kubernets集群3.1 设置 K8s 软件源3.2…...

Android实现底部导航栏方法(Navigation篇)

Navigation实现底部导航栏 前言导入和基本使用导入基础使用创建nav文件编辑Nav文件添加页面(代码版)添加页面(图解版) 创建导航动作 action创建action(代码版)创建action(图解版) 编…...

python 爬虫篇(1)---->re正则的详细讲解(附带演示代码)

re正则的详细讲解 文章目录 re正则的详细讲解前言4.re正则表达式(1)e正则的匹配模式(2) re.search 的使用(3)re.findall()的使用(4)re.sub()的使用结语前言 大家好,今天我将开始更新python爬虫篇,陆续更新几种解析数据的方法,例如 re正则表达式beautifulsoup xpath lxml 等等,…...

(超详细)10-YOLOV5改进-替换CIou为Wise-IoU

yolov5中box_iou其默认用的是CIoU,其中代码还带有GIoU,DIoU,文件路径:utils/metrics.py,函数名为:bbox_iou 将下面代码放到metrics.py文件里面,原来的bbox_iou函数删掉 class WIoU_Scale: mon…...

Java-并发高频面试题-2

接着之前的Java-并发高频面试题 7. synchronized的实现原理是怎么样的? 首先我们要知道synchronized它是解决线程安全问题的一种方式,而具体是怎么解决的呢?主要是通过加锁的方式来解决 在底层实现上来看 是通过 monitorenter、monitorexit…...

Windows安装Redis

安装Redis是一个比较简单的过程,以下是在Windows上安装Redis的基本步骤: 下载Redis:首先,你需要从Redis官方网站(https://redis.io/download)下载适合Windows的Redis安装包。你可以选择稳定版本或者开发版本…...

Nicn的刷题日常之 有序序列判断

目录 1.题目描述 描述 输入描述: 输出描述: 示例1 示例2 示例3 2.解题 1.题目描述 描述 输入一个整数序列,判断是否是有序序列,有序,指序列中的整数从小到大排序或者从大到小排序(相同元素也视为有序)。 数据…...

1、将 ChatGPT 集成到数据科学工作流程中:提示和最佳实践

将 ChatGPT 集成到数据科学工作流程中:提示和最佳实践 希望将 ChatGPT 集成到您的数据科学工作流程中吗?这是一个利用 ChatGPT 进行数据科学的提示的实践。 ChatGPT、其继任者 GPT-4 及其开源替代品非常成功。开发人员和数据科学家都希望提高工作效率,并使用 ChatGPT 来简…...

vite+vue3发布自己的npm组件+工具函数

记录一下个人最近一次发布npm组件的过程: 一、创建组件和工具函数 执行命令创建一个空项目: npm create vite 创建过程稍微有些慢,不知何故?其中选择vue , 个人暂时使用的JS 。在 src 目录下面创建一个文件 package 存放组件和公…...

嵌入式软件bug分析基本要求

摘要:软件从来不是一次就能完美的,需要以包容的眼光看待它的残缺。那问题究竟为何产生,如何去除呢? 1、软件问题从哪来 软件缺陷问题千千万万,主要是需求、实现、和运行环境三方面。 1.1 需求描述偏差 客户角度的描…...

【C/C++ 17】继承

目录 一、继承的概念 二、基类和派生类对象赋值转换 三、继承的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员变量 七、菱形继承与虚拟继承 一、继承的概念 继承是指一个类可以通过继承获得另一个类的属性和方法,扩展自己的功能&…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...