当前位置: 首页 > news >正文

nii convert to 2D image【python】

可以自己精简,我的label是二分类

import SimpleITK as sitk
import cv2
from PIL import Image
import numpy as np
import nibabel as nib  # nii格式一般都会用到这个包
import imageio  # 转换成图像
import osimport numpy as np
from scipy.ndimage import rotate
from scipy.ndimage import median_filter
import matplotlib.pyplot as pltxy = 128
vol1 = int(xy/2)
vol2 = int(xy/4)
vol3 = int(vol2+16)def preprocess(image):result = median_filter(image, size=3)"""# 添加高斯噪声noise = np.random.normal(0, 25, size=image.shape)noise_img = image + noise.astype('uint8')# 双边滤波result = cv2.bilateralFilter(noise_img, 9, 75, 75)# 显示图像cv2.imshow('src', image)cv2.imshow('noise', noise_img)cv2.imshow('result', result)cv2.waitKey()cv2.destroyAllWindows()"""return resultdef create_dirs(out_path, num):for i in range(1, num):  # 这里需要注意,i取不到6,因为range()是前闭后开的,即i的取值范围为1-5。dir = os.path.join(r'crop/test4/ct/')# 前者为路径,后者为待创建文件夹的名称。注意,批量创建文件夹时不能有重复名称的,因此可以对文件夹加上序号信息。isExists = os.path.exists(dir)if not isExists:os.mkdir(dir)def mask2d(input_path, output_folder, idx):# 加载NIfTI文件img = nib.load(input_path)data = img.get_fdata()# 获取数据的形状信息num_slices = data.shape[2]  # 切片数量print(data.shape, num_slices)# 遍历每个切片并保存为PNG图像for i in range(num_slices):slice_data = data[:, :, i]  # 提取当前切片数据# Image.fromarray(255*img_array_list[foo].astype('int')).convert('L')image = Image.fromarray(255 * slice_data.astype('int')).convert('L')image = image.rotate(270)# image = Image.fromarray(slice_data)  # 创建PIL图像对象output_name = f"{output_folder}slice_{idx}_{i}.png"  # 设置输出文件名image.save(output_name)  # 保存为PNG图像def nii2d(img_addr, target_folder, idx):img_addr_n = nib.load(img_addr)# Convert them to numpy format,data = img_addr_n.get_fdata()# clip the images within [-125, 275],data_clipped = np.clip(data, -125, 275)# normalize each 3D image to [0, 1], anddata_normalised = (data_clipped - (-125)) / (275 - (-125))split_root = img_addr.split('\\')  # 通过\\来进行截断print(split_root) # ['crop/test4/ct/volume-0.nii']# extract 2D slices from 3D volume for training cases while# e.g. slice 000for i in range(data.shape[2]):formattedi = "{:03d}".format(i)slice000 = data_normalised[:, :, i] * 255image = Image.fromarray(slice000)image = image.convert("L")image = image.rotate(270)image = image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)image.save(target_folder +str(idx)+"-"+str(i)+ ".png")for i in range(20):k = i + 1image_path = "ct/volume-{}.nii".format(str(i))label_path = "label/segmentation-{}.nii.gz".format(str(i))label = sitk.ReadImage(label_path, sitk.sitkInt16)label_array = sitk.GetArrayFromImage(label)image = sitk.ReadImage(image_path, sitk.sitkInt32)image_array = sitk.GetArrayFromImage(image)  # 分别读图像和标签数据print("\nimage_array=",image_array.shape, " label_array=",label_array.shape)center_x = (image_array.shape[1]) // 2center_y = (image_array.shape[2]) // 2center_z = (image_array.shape[0]) / 2  # 分别计算出xyz方向上的中心print("center_x=", center_x, "center_y=", center_y, "center_z=",center_z)center_x = center_x - vol2image_array = image_array[:, center_x - vol3:center_x + vol3, center_y - xy:center_y + xy]label_array = label_array[:, center_x - vol3:center_x + vol3, center_y - xy:center_y + xy]  # 在XY裁剪出一个256 * 256的区域#####只需要保存有标签的序列就行了z = np.any(label_array, axis=(1, 2))start_slice, end_slice = np.where(z)[0][[0, -1]]# 截取保留区域image_array = image_array[start_slice:end_slice + 1, :, :]label_array = label_array[start_slice:end_slice + 1, :, :]# print("Preprocessed shape:",ct_array.shape,seg_array.shape)new_image = sitk.GetImageFromArray(image_array)new_image.SetDirection(image.GetDirection())new_image.SetOrigin(image.GetOrigin())new_image.SetSpacing(image.GetSpacing())new_seg = sitk.GetImageFromArray(label_array)new_seg.SetDirection(label.GetDirection())new_seg.SetOrigin(label.GetOrigin())new_seg.SetSpacing(label.GetSpacing())sitk.WriteImage(new_image, "crop/test4/ct/volume-{}.nii".format(str(i)))sitk.WriteImage(new_seg, "crop/test4/label/segmentation-{}.nii.gz".format(str(i)))nii2d("crop/test4/ct/volume-" + str(i) + ".nii", "crop/png_ct/", i)mask2d("crop/test4/label/segmentation-" + str(i) + ".nii.gz", "crop/png_label/", i)"""对于label来说是ok的,但是对于那个来说不行"""

相关文章:

nii convert to 2D image【python】

可以自己精简,我的label是二分类 import SimpleITK as sitk import cv2 from PIL import Image import numpy as np import nibabel as nib # nii格式一般都会用到这个包 import imageio # 转换成图像 import osimport numpy as np from scipy.ndimage import ro…...

C语言指针学习 之 指针是什么

前言 指针是C语言中一个重要概念,也是C语言的一个重要特色,正确而灵活地运用指针可以使程序简洁、紧凑、高效。每一个学习和使用C语言的人都应当深入的学习和掌握指针,也可以说不掌握指针就没有掌握C语言的精华。 一、什么是指针 想弄清楚什…...

【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来

一、说明 欢迎阅读我们【文本到上下文 #10】:此为最后一章。以我们之前对 BERT 和迁移学习的讨论为基础,将重点转移到更广阔的视角,包括语言模型的演变和未来,特别是生成式预训练转换器 (GPT) 及其在 NLP 中…...

(四)elasticsearch 源码之索引流程分析

https://www.cnblogs.com/darcy-yuan/p/17024341.html 1.概览 前面我们讨论了es是如何启动,本文研究下es是如何索引文档的。 下面是启动流程图,我们按照流程图的顺序依次描述。 其中主要类的关系如下: 2. 索引流程 (primary) 我们用postman发送请求&…...

飞天使-k8s知识点16-kubernetes实操1-pod

文章目录 深入Pod 创建Pod:配置文件详解写个pod的yaml 文件深入Pod 探针:探针技术详解 深入Pod 创建Pod:配置文件详解 资源清单参考链接:https://juejin.cn/post/6844904078909128712写个pod的yaml 文件 apiVersion: v1 kind: P…...

【gcc】webrtc发送侧 基于丢包更新码率

参考大神的分析1 rtt 有问题:网络拥堵,直接下调码率 G:\CDN\rtcCli\m98\src\modules\congestion_controller\goog_cc\send_side_bandwidth_estimation.hRttBasedBackoff RttBasedBackoff rtt_backoff_;class RttBasedBackoff {public:explicit RttBasedBackoff(const WebRtcK…...

数字经济的未来:探索Web3的商业模式

随着技术的不断演进,Web3正逐渐成为数字经济发展的关键驱动力之一。在这个数字时代,我们目睹着Web3为商业模式带来翻天覆地的变革,探索着数字经济未来的可能性。 1. 去中心化的商业生态 Web3以去中心化为核心理念,打破了传统商业…...

Centos7部署MetaBase-v0.48.3

MetaBase_v0.48.3下载地址 : http://downloads.metabase.com/v0.48.3/metabase.jar JDK11 下载地址:https://repo.huaweicloud.com/java/jdk/11.0.113/jdk-11.0.1_linux-x64_bin.tar.gz 1.不修改源数据库的方式 官方提示此方式仅用于测试学习使用,如用生…...

【计算机网络】Socket的SO_TIMEOUT与连接超时时间

SO_TIMEOUT选项是Socket的一个选项,用于设置读取数据的超时时间。它指定了在读取数据时等待的最长时间,如果在指定的时间内没有数据可读取,将抛出SocketTimeoutException异常。 SO_TIMEOUT的设置 默认情况下,SO_TIMEOUT选项的值…...

解密 ARMS 持续剖析:如何用一个全新视角洞察应用的性能瓶颈?

作者:饶子昊、杨龙 应用复杂度提升,根因定位困难重重 随着软件技术发展迭代,很多企业软件系统也逐步从单体应用向云原生微服务架构演进,一方面让应用实现高并发、易扩展、开发敏捷度高等效果,但另外一方面也让软件应…...

【OJ比赛日历】春节快乐 #02.10-02.16 #9场

CompHub[1] 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注! 以下信息仅供参考,以比赛官网为准 目录 2024-02-10(周六) #4场比赛2024-02-11…...

前端下载文件有哪些方式

前端下载文件有哪些方式 在前端,最常见和最常用的文件下载方式是: 使用 标签的 download 属性: 创建一个 标签,并设置其 href 属性为文件的 URL,然后使用 download 属性指定下载的文件名。 这种方式简单直接&…...

vscode预览github上的markdown效果

需要安装的插件有: Github Markdown Preview Markdown Checkboxes Markdown Emoji Markdown footnotes Markdown Preview Github Styling Markdown Preview Mermaid Support Markdown yaml Preamble ctrlshiftv结合双页功能...

使用PaddleNLP识别垃圾邮件:用BERT做中文邮件内容分类,验证集准确率高达99.6%以上(附公开数据集)

使用PaddleNLP识别垃圾邮件:用BERT做中文邮件内容分类,验证集准确率高达99.6%以上(附公开数据集)。 要使用PaddleNLP和BERT来识别垃圾邮件并做中文邮件内容分类,可以按照以下步骤进行操作: 安装PaddlePaddle和PaddleNLP:首先,确保在你的环境中已经安装了PaddlePaddle和…...

在bash或脚本中,如何并行执行命令或任务(命令行、parallel、make)

最近要批量解压归档文件和压缩包,所以就想能不能并行执行这些工作。因为tar自身不支持并行解压,但是像make却可以支持生成一些文件,所以我才有了这种想法。 方法有两种,第一种不用安装任何软件或工具,直接bash或其他 …...

拼音笔记笔记

一、翀的读音:chōng 声母:ch 韵母:ong 声调:一声 二、汉字释义: 向上直飞,相当于“冲”。 三、汉字结构:左右结构 四、部首:羽 五、相关词组: 翀举:谓成仙升…...

13. Threejs案例-绘制3D文字

13. Threejs案例-绘制3D文字 实现效果 知识点 FontLoader 一个用于加载 JSON 格式的字体的类。 返回 font,返回值是表示字体的 Shape 类型的数组。 其内部使用 FileLoader 来加载文件。 构造器 FontLoader( manager : LoadingManager ) 参数类型描述managerLo…...

clickhouse清理日志。

参考Clickhouse&#xff1a;日志表占用大量磁盘空间怎么办&#xff1f;_clickhouse store目录很大-CSDN博客t 清理脚本如下&#xff0c;清理动作需要时间比较长&#xff0c;10多分钟&#xff1a; alter table system.trace_log delete where event_date < 2024-01-01 alt…...

JS中实现继承

1.使用call实现继承&#xff08;不推荐&#xff09; function Animal(name) {this.name name;this.run function() {console.log(this.name, "跑");} } function Dog(name) {// 继承Animal.call(this, name);this.sleep function() {console.log(this.name, &quo…...

spring boot学习第九篇:操作mongo的集合和集合中的数据

1、安装好了Mongodb 参考&#xff1a;ubuntu安装mongod、配置用户访问、添删改查-CSDN博客 2、pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候&#xff0c;显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​&#xff1a;这篇文章要解决的问题是当前大型语言模型&#xff08;LLMs&#xff09;在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色&#xff0c;但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成&#xff08;RA…...