爬取58二手房并用SVR模型拟合
目录
一、前言
二、爬虫与数据处理
三、模型
一、前言
爬取数据仅用于练习和学习。本文运用二手房规格sepc(如3室2厅1卫)和二手房面积area预测二手房价格price,只是练习和学习,不代表任何实际意义。
二、爬虫与数据处理
import requests
import chardet
import pandas as pd
import time
from lxml import etree
from fake_useragent import UserAgentua = UserAgent()
user_agent = ua.random
print(user_agent)url = 'https://gy.58.com/ershoufang/'
headers = {'User-Agent':user_agent
}resp = requests.get(url=url, headers=headers)
encoding = chardet.detect(resp.content)['encoding']
resp.encoding = encoding
page_text = resp.texttree = etree.HTML(page_text)
page_num_data = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/ul/li/a/text()')
page_num = [item.strip() for item in page_num_data if item.strip().isdigit()]
last_page = int(page_num[-1])total_address_title = []
total_BR_LR_B = []
total_area = []
total_price = []
empty_title = 0
empty_address_data = 0
empty_BR_LR_B_data = 0
empty_area_data = 0
empty_price_data = 0for i in range(1, last_page+1):url = 'https://gy.58.com/ershoufang/p{}/?PGTID=0d100000-007d-f5b6-2cca-9cae0bcabf83&ClickID=1'.format(i)headers = {'User-Agent':user_agent}resp = requests.get(url=url, headers=headers)encoding = chardet.detect(resp.content)['encoding']resp.encoding = encodingpage_text = resp.texttree = etree.HTML(page_text)title = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/a/div/div/div/h3[@class="property-content-title-name"]/text()')time.sleep(3)address_data = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/a/div/div/section/div/p[@class="property-content-info-comm-address"]/span/text()')address = [''.join(address_data[i:i+3]) for i in range(0, len(address_data), 3)]time.sleep(3)title_address = [str(address[i]) + '||' + str(title[i]) for i in range(min(len(address), len(title)))]total_address_title.extend(title_address)BR_LR_B_data = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/a/div/div/section/div/p[@class="property-content-info-text property-content-info-attribute"]/span/text()')BR_LR_B = [''.join(BR_LR_B_data[i:i+6]) for i in range(0, len(BR_LR_B_data), 6)]total_BR_LR_B.extend(BR_LR_B)time.sleep(3)area_data = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/a/div/div/section/div/p[@class="property-content-info-text"]/text()')area = [item.strip() for item in area_data if '㎡' in item.strip()]total_area.extend(area)time.sleep(3)price_data = tree.xpath('//*[@id="esfMain"]/section/section/section/section/div/a/div/div/p/span[@class="property-price-total-num"]/text()')price = [price + '万' for price in price_data]total_price.extend(price)time.sleep(3)if len(title) == 0:empty_title += 1if len(address_data) == 0:empty_address_data += 1if len(BR_LR_B_data) == 0:empty_BR_LR_B_data += 1if len(area_data) == 0:empty_area_data += 1if len(price_data) == 0:empty_price_data += 1print('Page{} 爬取成功'.format(i))df = pd.DataFrame({'地址': total_address_title,'规格': total_BR_LR_B,'面积': total_area,'价格': total_price
})print(empty_title, empty_address_data, empty_BR_LR_B_data, empty_area_data, empty_price_data)df.to_excel('58二手房信息表.xlsx', index=False, engine='openpyxl')
print('58二手房信息表保存成功!')# 处理表格
df = pd.read_excel('C:\\Users\\sjl\\Desktop\\58Second-hand-house\\58二手房信息表.xlsx')delete_column = '地址'
df = df.drop(delete_column, axis=1) # 删除地址一列df['规格'] = df['规格'].str.replace('室', '')
df['规格'] = df['规格'].str.replace('厅', '')
df['规格'] = df['规格'].str.replace('卫', '')
df['面积'] = df['面积'].str.replace('㎡', '')
df['价格'] = df['价格'].str.replace('万', '') # 删除文字和字符,保留数值df = df.rename(columns={'规格': 'spec', '面积': 'area', '价格': 'price'}) # 重命名列df = df * 0.001 # 缩小数值, 减少计算量df.to_excel('58Second-hand-house.xlsx', index=False, engine='openpyxl')
print('数据处理成功!')
1. 运用chardet库自动获取网页编码
import chardet
resp = requests.get(url=url, headers=headers)encoding = chardet.detect(resp.content)['encoding']
resp.encoding = encoding
2. 运用fake_useragent库,生成随机的用户代理字符串,获取一个随机的用户代理来使用
from fake_useragent import UserAgent
ua = UserAgent()
user_agent = ua.random
print(user_agent)
3. 使用列表推导,去除每个元素的空白字符,并保留那些只包含数字的元素,以获取网站页数
page_num = [item.strip() for item in page_num_data if item.strip().isdigit()]
首先使用strip()方法去除其两端的空白字符(包括换行符\n、空格等),接着使用isdigit()方法检查处理后的字符串是否只包含数字。如果条件成立,即字符串只包含数字,那么这个处理后的字符串就会被包含在page_num列表中。
4. 使用列表推导来遍历列表,并将每三个元素组合成一个元素,获取大致地址
address = [''.join(address_data[i:i+3]) for i in range(0, len(address_data), 3)]
首先通过range(0, len(address_data) 3)生成一个从0开始,address_data最后一位长度结束,步长为3的序列。然后,对于序列中的每个i,使用''.join(address_data[i, i+3])连接从i到i+3(不包括i+3)的元素。这样,每三个元素就被拼接成了一个元素,并存储在address中。
5. 考虑到大致地址会有重复,在地址后附加上标题,作为每个二手房独一无二的标志
title_address = [str(address[i]) + '||' + str(title[i]) for i in range(min(len(address), len(title)))]
6. 同样合并'3','室','2','厅','1','卫'
BR_LR_B = [''.join(BR_LR_B_data[i:i+6]) for i in range(0, len(BR_LR_B_data), 6)]
7. 使用列表推导结合字符串处理方法获得只包含面积部分
area = [item.strip() for item in area_data if '㎡' in item.strip()]
遍历列表,对于每个元素,使用strip()方法去除前后的空格和换行符。检查处理过的字符串是否包含 "㎡" 字符,如果包含,则认为这个字符串表示面积信息。将这些面积信息添加到一个area列表中。
8. 在价格后加上 "万"
price = [price + '万' for price in price_data]
9. 监控得到有9页数据爬取失败
if len(title) == 0:
empty_title += 1
if len(address_data) == 0:
empty_address_data += 1
if len(BR_LR_B_data) == 0:
empty_BR_LR_B_data += 1
if len(area_data) == 0:
empty_area_data += 1
if len(price_data) == 0:
empty_price_data += 1

10. 删除表中的文字
df['规格'] = df['规格'].str.replace('室', '')
df['规格'] = df['规格'].str.replace('厅', '')
df['规格'] = df['规格'].str.replace('卫', '')
df['面积'] = df['面积'].str.replace('㎡', '')
df['价格'] = df['价格'].str.replace('万', '')
11.部分数据展示(处理前后)
delete_column = '地址'
df = df.drop(delete_column, axis=1) # 删除地址一列
df['规格'] = df['规格'].str.replace('室', '')
df['规格'] = df['规格'].str.replace('厅', '')
df['规格'] = df['规格'].str.replace('卫', '')
df['面积'] = df['面积'].str.replace('㎡', '')
df['价格'] = df['价格'].str.replace('万', '') # 删除文字和字符,保留数值
df = df.rename(columns={'规格': 'spec', '面积': 'area', '价格': 'price'}) # 重命名列
df = df * 0.001 # 缩小数值, 减少计算量

三、模型
模型官网:Ml regression in PythonOver 13 examples of ML Regression including changing color, size, log axes, and more in Python.
https://plotly.com/python/ml-regression/
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn.svm import SVRmesh_size = .02
margin = 0df = pd.read_excel('C:\\Users\\sjl\\Desktop\\58Second-hand-house\\58Second-hand-house.xlsx')X = df[['spec', 'area']]
y = df['price']# Condition the model on sepal width and length, predict the petal width
model = SVR(C=1.)
model.fit(X, y)# Create a mesh grid on which we will run our model
x_min, x_max = X.spec.min() - margin, X.spec.max() + margin
y_min, y_max = X.area.min() - margin, X.area.max() + margin
xrange = np.arange(x_min, x_max, mesh_size)
yrange = np.arange(y_min, y_max, mesh_size)
xx, yy = np.meshgrid(xrange, yrange)# Run model
pred = model.predict(np.c_[xx.ravel(), yy.ravel()])
pred = pred.reshape(xx.shape)# Generate the plot
fig = px.scatter_3d(df, x='spec', y='area', z='price')
fig.update_traces(marker=dict(size=5))
fig.add_traces(go.Surface(x=xrange, y=yrange, z=pred, name='pred_surface'))
fig.show()


相关文章:
爬取58二手房并用SVR模型拟合
目录 一、前言 二、爬虫与数据处理 三、模型 一、前言 爬取数据仅用于练习和学习。本文运用二手房规格sepc(如3室2厅1卫)和二手房面积area预测二手房价格price,只是练习和学习,不代表任何实际意义。 二、爬虫与数据处理 import requests import cha…...
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之RichText组件
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之RichText组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、RichText组件 鸿蒙(HarmonyOS)富文本组件,…...
7.electron之渲染线程发送事件,主进程监听事件
如果可以实现记得点赞分享,谢谢老铁~ Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 将 Chromium 和 Node.js 嵌入到了一个二进制文件中,因此它允许你仅需一个代码仓库,就可以撰写支持 Windows、…...
thinkphp6入门(19)-- 中间件向控制器传参
可以通过给请求对象赋值的方式传参给控制器(或者其它地方),例如 <?phpnamespace app\middleware;class Hello {public function handle($request, \Closure $next){$request->hello ThinkPHP;return $next($request);} } 然后在控制…...
Flink Format系列(2)-CSV
Flink的csv格式支持读和写csv格式的数据,只需要指定 format csv,下面以kafka为例。 CREATE TABLE user_behavior (user_id BIGINT,item_id BIGINT,category_id BIGINT,behavior STRING,ts TIMESTAMP(3) ) WITH (connector kafka,topic user_behavior…...
Spring Data Envers 数据审计实战2 - 自定义监听程序扩展审计字段及字段值
上篇讲述了如何在Spring项目中集成Spring Data Envers做数据审计和历史版本查看功能。 之前演示的是业务表中已有的字段进行审计,那么如果我们想扩展审计字段呢? 比如目前对员工表加入了Audited审计,员工表有个字段为dept_id,为…...
一个 SpringBoot 项目能同时处理多少请求?
目录 1 问题分析 2 Demo 3 答案 4 怎么来的? 5 标准答案及影响参数一Tomcat配置 6 影响参数二 Web容器 7 影响参数三 Async 1 问题分析 一个 SpringBoot 项目能同时处理多少请求? 不知道你听到这个问题之后的第一反应是什么? 我大概…...
计算机网络——网络
计算机网络——网络 小程一言专栏链接: [link](http://t.csdnimg.cn/ZUTXU)前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家, [跳转到网站](https://www.captainbed.cn/qianqiu) 无线网络和移动网…...
C语言探索:选择排序的实现与解读
当我们需要对一组数据进行排序时,选择排序(Selection Sort)是一种简单但效率较低的排序算法。它的基本思想是每次从未排序的数据中选择最小(或最大)的元素,然后将其放置在已排序序列的末尾。通过重复这个过…...
Golang 学习(二)进阶使用
二、进阶使用 性能提升——协程 GoRoutine go f();一个 Go 线程上,可以起多个协程(有独立的栈空间、共享程序堆空间、调度由用户控制)主线程是一个物理线程,直接作用在 cpu 上的。是重量级的,非常耗费 cpu 资源。协…...
ubuntu22.04@laptop OpenCV定制化安装
ubuntu22.04laptop OpenCV定制化安装 1. 源由2. 默认配置3. 定制配置4. 定制安装5. 定制OpenCV-4.9.05.1 修改opencv.conf5.2 加载so文件5.3 修改bash环境变量5.4 增加pkgconfig5.5 检查OpenCV-4.9.0安装 6. 总结7. 参考资料 1. 源由 目前,能Google到的代码层次不齐…...
linux系统非关系型数据库redis
redis 介绍redis的特点:缓存 安装安装单机版redisredis的相关工具 介绍 redis是一个开源的、使用C语言编写的、支持网络交互的、可基于内存也可持久化的Key-Value数据库 redis的官网:redis.ioredis的特点: 丰富的数据结构 支持持久化 支持事务 支持主从缓存 类型 …...
【LeetCode: 292. Nim 游戏+ 博弈问题】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
Android 9.0 禁用adb reboot recovery命令实现正常重启功能
1.前言 在9.0的系统rom定制化开发中,在定制recovery模块的时候,由于产品开发需要要求禁用recovery的相关功能,比如在通过adb命令的 adb reboot recovery的方式进入recovery也需要实现禁用,所以就需要了解相关进入recovery流程来禁用该功能 2.禁用adb reboot recovery命…...
分析网站架构:浏览器插件
一、Wappalyzer 1.1 介绍 Wappalyzer 是一款用于识别网站所使用技术栈的浏览器插件。它能够分析正在浏览的网页,检测出网站所使用的各种技术和框架,如内容管理系统(CMS)、JavaScript库、Web服务器等。用户只需安装 Wappalyzer 插…...
CentOS7搭建Hadoop集群
准备工作 1、准备三台虚拟机,参考:CentOS7集群环境搭建(3台)-CSDN博客 2、配置虚拟机之间免密登录,参考:CentOS7集群配置免密登录-CSDN博客 3、虚拟机分别安装jdk,参考:CentOS7集…...
10.0 Zookeeper 权限控制 ACL
zookeeper 的 ACL(Access Control List,访问控制表)权限在生产环境是特别重要的,所以本章节特别介绍一下。 ACL 权限可以针对节点设置相关读写等权限,保障数据安全性。 permissions 可以指定不同的权限范围及角色。 …...
容器化技术基础概念:雪花服务器与凤凰服务器
雪花服务器与凤凰服务器:两种软件部署领域的基础设施对比 在软件部署领域,服务器管理在正常运行时间、效率和安全性方面发挥着关键作用。存在两种截然不同的方法:雪花服务器和凤凰服务器。了解它们之间的区别将帮助您选择最适合您需求的策略…...
解决maven 在IDEA 下载依赖包速度慢的问题
1.idea界面双击shift键 2.打开setting.xml文件 复制粘贴 <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:sc…...
用python编写爬虫,爬取二手车信息+实验报告
题目 报告要求 工程报告链接放在这里 https://download.csdn.net/download/Samature/88805518使用 1.安装jupyter notebook 2.用jupyter notebook打开工程里的ipynb文件,再run all就行 注意事项 可能遇到的bug 暂无,有的话私信我...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
