java---查找算法(二分查找,插值查找,斐波那契[黄金分割查找] )-----详解 (ᕑᗢᓫ∗)˒
目录
一. 二分查找(递归):
代码详解:
运行结果:
二分查找优化:
优化代码:
运行结果(返回对应查找数字的下标集合):
编辑
二分查找(非递归):
二. 插值查找
代码详解:
运行结果:
三. 斐波那契[黄金分割查找]
代码详解:
运行结果:
一. 二分查找(递归):
前提条件: 所要查找的数组必须为有序,如果不是有序要事先排序好
二分查找思路:
1. 首先确定该数组的中间的下标 mid = (left + right) / 2
2. 然后让需要查找的数 findVal 和 arr[mid] 比较--->分情况进行讨论
2.1 findVal > arr[mid] , 说明你要查找的数在mid 的右边, 因此需要递归的向右查找
2.2 findVal < arr[mid], 说明你要查找的数在mid 的左边, 因此需要递归的向左查找
2.3 findVal == arr[mid] 说明找到,就返回
//什么时候我们需要结束递归.
1) 找到就结束递归
2) 递归完整个数组,仍然没有找到findVal ,也需要结束递归 当 left > right 就需要退出
代码详解:
public class BinarySearch {// 二分查找算法/**** @param arr* 数组* @param left* 左边的索引* @param right* 右边的索引* @param findVal* 要查找的值* @return 如果找到就返回下标,如果没有找到,就返回 -1*/public static int binarySearch(int[] arr, int left, int right, int findVal) {// 当 left > right 时,说明递归整个数组,但是没有找到if (left > right) {return -1;}int mid = (left + right) / 2;int midVal = arr[mid];if (findVal > midVal) { // 向 右递归return binarySearch(arr, mid + 1, right, findVal);} else if (findVal < midVal) { // 向左递归return binarySearch(arr, left, mid - 1, findVal);} else {return mid;}}
//测试public static void main(String[] args){Scanner sc = new Scanner(System.in);int[] arr = new int[]{5,13,17,24,35};System.out.print("请输入要查找的数字:");int n = sc.nextInt();int index = binarySearch(arr,0,arr.length-1,n);//一定要为有序数组if(index >= 0){System.out.println("找到了,他的下标是:"+index);}else{System.out.println("找不到!");}}
}
运行结果:
输入所要查找的数字,就能返回对应的数组下标
二分查找优化:
如果数组中出现多个相同的数字,那我们如何得到所有要查找数字的下标呢?很显然,上述代码不足以解决这个问题
例如数组:{1,8, 10, 89, 1000, 1000,1234} 这时,我们需要借助集合ArrayList来解决(相对简便)
思路:
* 1. 在找到mid 索引值,不要马上返回
* 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 4. 将Arraylist返回
优化代码:
public class BinarySearch {// 二分查找算法/**** @param arr* 数组* @param left* 左边的索引* @param right* 右边的索引* @param findVal* 要查找的值* @return 如果找到就返回下标,如果没有找到,就返回 -1*/public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {// 当 left > right 时,说明递归整个数组,但是没有找到if (left > right) {return new ArrayList<Integer>();}int mid = (left + right) / 2;int midVal = arr[mid];if (findVal > midVal) { // 向 右递归return binarySearch2(arr, mid + 1, right, findVal);} else if (findVal < midVal) { // 向左递归return binarySearch2(arr, left, mid - 1, findVal);} else {List<Integer> resIndexlist = new ArrayList<Integer>();//向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayListint temp = mid - 1;while(true) {if (temp < 0 || arr[temp] != findVal) {//退出break;}//否则,就temp 放入到 resIndexlistresIndexlist.add(temp);temp -= 1; //temp左移}resIndexlist.add(mid); ////向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayListtemp = mid + 1;while(true) {if (temp > arr.length - 1 || arr[temp] != findVal) {//退出break;}//否则,就temp 放入到 resIndexlistresIndexlist.add(temp);temp += 1; //temp右移}return resIndexlist;}}public static void main(String[] args){Scanner sc = new Scanner(System.in);int[] arr = new int[]{1,8, 10, 89, 1000, 1000,1000,1234};System.out.print("请输入要查找的数字:");int n = sc.nextInt();//一定要为有序数组List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, n);System.out.println("resIndexList=" + resIndexList);}
}
运行结果(返回对应查找数字的下标集合):
二分查找(非递归):
与上面类似,不再过多说明,直接上代码:
import java.util.*;public class BinarySearch {public static int binarySearch(int[] arr,int findVal){int left = 0;int right = arr.length-1;while(left <= right){int mid = (left + right) / 2;if(arr[mid] == findVal){return mid;}else if(arr[mid] > findVal){right = mid - 1;}else{left = mid + 1;}}return -1;//如果上述条件都没满足,说明没有找到}public static void main(String[] args){Scanner sc = new Scanner(System.in);int[] arr = new int[]{4,8,13,78,90};System.out.print("请输入要查找的数字:");int n = sc.nextInt();int ret = binarySearch(arr,n);if(ret >= 0){System.out.println("找到了,它的下标是:"+ret);}else{System.out.println("没有找到!");}}
}
运行结果:
二. 插值查找
举个栗子:
数组 arr = [1, 2, 3, ......., 100] 假如我们需要查找的值 1 使用二分查找的话,我们需要多次递归,才能找到 1
使用插值查找算法 int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left]) -----》相当于公式
int mid = 0 + (99 - 0) * (1 - 1)/ (100 - 1) = 0 + 99 * 0 / 99 = 0
比如我们查找的值 100
int mid = 0 + (99 - 0) * (100 - 1) / (100 - 1) = 0 + 99 * 99 / 99 = 0 + 99 = 99
相对二分查找,插值查找效率更高,但是与二分查找一样需要数组有序
代码详解:
import java.util.*;
public class InsertValueSearch {//说明:插值查找算法,也要求数组是有序的/**** @param arr 数组* @param left 左边索引* @param right 右边索引* @param findVal 查找值* @return 如果找到,就返回对应的下标,如果没有找到,返回-1*/public static int insertValueSearch(int[] arr, int left, int right, int findVal) {int count = 0;System.out.println("插值查找次数:"+(++count));//注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要//否则我们得到的 mid 可能越界if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {return -1;}// 求出mid, 自适应int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);int midVal = arr[mid];if (findVal > midVal) { // 说明应该向右边递归return insertValueSearch(arr, mid + 1, right, findVal);} else if (findVal < midVal) { // 说明向左递归查找return insertValueSearch(arr, left, mid - 1, findVal);} else {return mid;}}public static void main(String[] args){Scanner sc = new Scanner(System.in);System.out.print("请输入要查找的数字:");int n = sc.nextInt();int[] arr = new int [100];for(int i = 0;i < 100;i++){arr[i] = i + 1;}int ret = insertValueSearch(arr,0,arr.length-1,n);if(ret >= 0){System.out.println("找到了,它的下标是:"+ret);}else{System.out.println("没找到!");}}}
运行结果:
三. 斐波那契[黄金分割查找]
代码详解:
import java.util.*;
public class FibonacciSearch {public static int maxSize = 20;public static void main(String[] args) {Scanner sc = new Scanner(System.in);System.out.print("请输入要查找的数字:");int n = sc.nextInt();int [] arr = {1,8, 10, 89, 1000, 1234};System.out.println("index=" + fibSearch(arr, n));// 0}//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列//非递归方法得到一个斐波那契数列public static int[] fib() {int[] f = new int[maxSize];f[0] = 1;f[1] = 1;for (int i = 2; i < maxSize; i++) {f[i] = f[i - 1] + f[i - 2];}return f;}//使用非递归的方式编写算法/**** @param a 数组* @param key 我们需要查找的关键码(值)* @return 返回对应的下标,如果没有-1*/public static int fibSearch(int[] a, int key) {int low = 0;int high = a.length - 1;int k = 0; //表示斐波那契分割数值的下标int mid = 0; //存放mid值int f[] = fib(); //获取到斐波那契数列//获取到斐波那契分割数值的下标while(high > f[k] - 1) {k++;}//因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]//不足的部分会使用0填充int[] temp = Arrays.copyOf(a, f[k]);//实际上需求使用a数组最后的数填充 temp//举例://temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,}for(int i = high + 1; i < temp.length; i++) {temp[i] = a[high];}// 使用while来循环处理,找到我们的数 keywhile (low <= high) { // 只要这个条件满足,就可以找mid = low + f[k - 1] - 1;if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)high = mid - 1;//1. 全部元素 = 前面的元素 + 后边元素//2. f[k] = f[k-1] + f[k-2]//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]//即 在 f[k-1] 的前面继续查找 k--//即下次循环 mid = f[k-1-1]-1k--;} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)low = mid + 1;//1. 全部元素 = 前面的元素 + 后边元素//2. f[k] = f[k-1] + f[k-2]//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]//4. 即在f[k-2] 的前面进行查找 k -=2//5. 即下次循环 mid = f[k - 1 - 2] - 1k -= 2;} else { //找到//需要确定,返回的是哪个下标if(mid <= high) {return mid;} else {return high;}}}return -1;}
}
运行结果:
博客到这里也是结束了,制作不易,喜欢的小伙伴可以点赞加关注支持下博主,这对我真的很重要~~
相关文章:

java---查找算法(二分查找,插值查找,斐波那契[黄金分割查找] )-----详解 (ᕑᗢᓫ∗)˒
目录 一. 二分查找(递归): 代码详解: 运行结果: 二分查找优化: 优化代码: 运行结果(返回对应查找数字的下标集合): 编辑 二分查找(非递归…...
鸿蒙应用/元服务开发-窗口(Stage模型)设置悬浮窗
一、设置悬浮窗说明 悬浮窗可以在已有的任务基础上,创建一个始终在前台显示的窗口。即使创建悬浮窗的任务退至后台,悬浮窗仍然可以在前台显示。通常悬浮窗位于所有应用窗口之上;开发者可以创建悬浮窗,并对悬浮窗进行属性设置等操…...

springboot集成easypoi导出多sheet页
pom文件 <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>4.1.0</version> </dependency> 导出模板: 后端代码示例: /*** 导出加油卡进便利店大额审批列…...

自己动手打包element UI官方手册文档教程
经常用element ui朋友开发的比较郁闷,官方文档网基本上都是打不开的, 官方:https://element.eleme.io/ 一直打不开,分析下是里面用的cdn链接ssl证书无效。 就想着自己搭建一个element UI文档 自己搭建的: Element文档网…...

《计算机网络简易速速上手小册》第5章:无线网络和移动通信(2024 最新版)
5.1 WLAN的工作原理 - 揭秘无线局域网络的魔法 5.1.1 基础知识 无线局域网络(WLAN)允许设备通过无线方式连接到一个局部区域网络,主要基于IEEE 802.11标准,俗称Wi-Fi。WLAN的核心是无线路由器,它不仅充当着网络中各设…...

2024PMP考试新考纲-近年PMP真题练一练和很详细解析(3)
今天华研荟继续为您分享和解析PMP真题,一方面让大家感受实际的PMP考试和出题形式,另一方面是通过较详细的解题思路和知识讲解帮助大家最后一个多月有效备考,一次性3A通过2024年PMP考试。 2024年PMP考试新考纲-近年真题随机练一练 (注&#x…...

java SpringBoot2.7整合Elasticsearch(ES)7 进行文档增删查改
首先 我们在 ES中加一个 books 索引 且带有IK分词器的索引 首先 pom.xml导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>applicatio…...

动态内存管理(2)
文章目录 4. 几个经典的笔试题4.1 题目14.2 题目24.3 题目34.4 题目4 5. C/C程序的内存开辟6. 动态通讯录7. 柔性数组7.1 柔性数组的特点7.2 柔性数组的使用7.3 柔性数组的优势 4. 几个经典的笔试题 4.1 题目1 #include <stdio.h> #include <stdlib.h> #include …...

使用 git 上传文件时,运行 命令 git pull origin 时未成功,出现报错信息
项目场景: 背景: 使用 git 上传文件时,运行 命令 git pull origin 时未成功,出现报错信息 问题描述 问题: $ git pull origin print --allow-unrelated-histories error: Pulling is not possible because you hav…...

Linux文件编译
目录 一、GCC编译 1.直接编译 2.分步编译 预处理: 编译: 汇编: 链接: 3.多文件编译 4.G 二、Make 1.概述 2.使用步骤 3.makefile创建规则 3.1一个基本规则 3.2两个常用函数 4.示例文件 三、GDB 示例:…...

homeword_day1
第一章 命名空间 一.选择题 1、编写C程序一般需经过的几个步骤依次是( B ) A. 编辑、调试、编译、连接 B. 编辑、编译、连接、运行 C. 编译、调试、编辑、连接 D. 编译、编辑、连接、运行 2、所谓数据封装就是将一组数据和与这组数据…...

ChatGPT论文指南|ChatGPT论文写作过程中6个润色与查重提示词
论文完成初稿之后,一般情况下,宝子们还需要找专家给我们提出评审意见。找专家评审其实并不容易,即使对老师来说,找人评审论文也是一件苦活。我们这个时候可以通过文字提示让 ChatGPT充当我们的评审专家,为论文提出问题…...

论文阅读:Learning Lens Blur Fields
这篇文章是对镜头模糊场进行表征学习的研究,镜头的模糊场也就是镜头的 PSF 分布,镜头的 PSF 与物距,焦距,光学系统本身的像差都有关系,实际的 PSF 分布是非常复杂而且数量也很多,这篇文章提出用一个神经网络…...

SpringBoot整合Knife4j接口文档生成工具
一个好的项目,接口文档是非常重要的,除了能帮助前端和后端开发人员更快地协作完成开发任务,接口文档还能用来生成资源权限,对权限访问控制的实现有很大的帮助。 这篇文章介绍一下企业中常用的接口文档工具Knife4j(基于…...

爬虫(三)
1.JS逆向实战破解X-Bogus值 X-Bogus:以DFS开头,总长28位 答案是X-Bogus,因为会把负载里面所有的值打包生成X-Boogus 1.1 找X-Bogus加密位置(请求堆栈) 1.1.1 绝招加高级断点(日志断点) 日志断点看有没有X-B值 日志…...

03 动力云客项目之登录功能后端实现
1 准备工作 1.1 创建项目 使用Spring initializr初始化项目 老师讲的是3.2.0, 但小版本之间问题应该不大. 1.2 项目结构 根据阿里巴巴Java开发手册确定项目结构 1.3 分层领域模型 【参考】分层领域模型规约: • DO(Data Object)&am…...

时光峰峦文物璀璨,预防性保护筑安全
在璀璨的历史长河中,珍贵文物如同时间的印记,承载着过往的辉煌。《人文山水时光峰峦——多彩贵州历史文化展》便是这样一场文化的盛宴,汇聚了众多首次露面的宝藏。然而,文物的保存对环境要求极为苛刻,温湿度波动都可能…...
Redis面试题43
人工智能在未来会有哪些可能的发展趋势? 答:人工智能在未来将继续迎来许多可能的发展趋势,以下是一些可能的方向: 更强大的算法和模型:人工智能算法和模型将不断改进和优化,为更复杂的数据和问题提供更强大…...

Redis -- list列表
只有克服了情感的波动,才能专心致志地追求事业的成功 目录 列表 list命令 lpush lpushx rpush rpushx lrange lpop rpop lindex linsert llen lrem ltrim 阻塞命令 小结 列表 列表相当于 数组或者顺序表。 列表类型是用来存储多个有序的字符串&…...

【MATLAB】使用梯度提升树在回归预测任务中进行特征选择(深度学习的数据集处理)
1.梯度提升树在神经网络的应用 使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。此外&…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...

实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...